Joint frame rate adaptation and object recognition model selection for stabilized unmanned aerial vehicle surveillance

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC ETRI Journal Pub Date : 2023-10-28 DOI:10.4218/etrij.2023-0121
Gyu Seon Kim, Haemin Lee, Soohyun Park, Joongheon Kim
{"title":"Joint frame rate adaptation and object recognition model selection for stabilized unmanned aerial vehicle surveillance","authors":"Gyu Seon Kim,&nbsp;Haemin Lee,&nbsp;Soohyun Park,&nbsp;Joongheon Kim","doi":"10.4218/etrij.2023-0121","DOIUrl":null,"url":null,"abstract":"<p>We propose an adaptive unmanned aerial vehicle (UAV)-assisted object recognition algorithm for urban surveillance scenarios. For UAV-assisted surveillance, UAVs are equipped with learning-based object recognition models and can collect surveillance image data. However, owing to the limitations of UAVs regarding power and computational resources, adaptive control must be performed accordingly. Therefore, we introduce a self-adaptive control strategy to maximize the time-averaged recognition performance subject to stability through a formulation based on Lyapunov optimization. Results from performance evaluations on real-world data demonstrate that the proposed algorithm achieves the desired performance improvements.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"45 5","pages":"811-821"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0121","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an adaptive unmanned aerial vehicle (UAV)-assisted object recognition algorithm for urban surveillance scenarios. For UAV-assisted surveillance, UAVs are equipped with learning-based object recognition models and can collect surveillance image data. However, owing to the limitations of UAVs regarding power and computational resources, adaptive control must be performed accordingly. Therefore, we introduce a self-adaptive control strategy to maximize the time-averaged recognition performance subject to stability through a formulation based on Lyapunov optimization. Results from performance evaluations on real-world data demonstrate that the proposed algorithm achieves the desired performance improvements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于稳定无人机监视的联合帧率自适应和目标识别模型选择
我们提出了一种适用于城市监控场景的自适应无人机辅助目标识别算法。对于无人机辅助监视,无人机配备了基于学习的目标识别模型,可以收集监视图像数据。然而,由于无人机在功率和计算资源方面的限制,必须相应地执行自适应控制。因此,我们引入了一种自适应控制策略,通过基于李雅普诺夫优化的公式,在稳定的情况下最大化时间平均识别性能。对真实世界数据的性能评估结果表明,所提出的算法实现了所需的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
期刊最新文献
Issue Information Free-space quantum key distribution transmitter system using WDM filter for channel integration Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs SNN eXpress: Streamlining Low-Power AI-SoC Development With Unsigned Weight Accumulation Spiking Neural Network NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1