Elucidating the functional role of human ABHD16B lipase in regulating triacylglycerol mobilization and membrane lipid synthesis in Saccharomyces cerevisiae

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemistry and Physics of Lipids Pub Date : 2023-11-07 DOI:10.1016/j.chemphyslip.2023.105353
Raja Narayanasamy , Dandamudi Usharani , Ram Rajasekharan
{"title":"Elucidating the functional role of human ABHD16B lipase in regulating triacylglycerol mobilization and membrane lipid synthesis in Saccharomyces cerevisiae","authors":"Raja Narayanasamy ,&nbsp;Dandamudi Usharani ,&nbsp;Ram Rajasekharan","doi":"10.1016/j.chemphyslip.2023.105353","DOIUrl":null,"url":null,"abstract":"<div><p>Lipids are essential biological macromolecules that play a pivotal role in various physiological processes and cellular homeostasis. ABHD16B, a member of the α/β-hydrolase domain (ABHD) superfamily protein, has emerged as a potential key regulator in lipid metabolism. However, the precise role of human ABHD16B in lipid metabolism remains unclear. In this study, we reported the overexpression of ABHD16B in <em>Saccharomyces cerevisiae</em> to determine its physiological relevance in lipid metabolism. Through <em>in vivo</em> [<sup>14</sup>C]acetate labeling experiments, we observed that overexpression of ABHD16B causes a decrease in cellular triacylglycerol (TAG) levels and a concurrent increase in phospholipid synthesis in wild-type cells. Mass spectrometry (LC–MS/MS) analysis further corroborated these findings, showing a significant decrease in TAGs with a carbon chain length of 48 and an increase in major phospholipid species, specifically 34:2, upon overexpression of ABHD16B. Confocal microscopy analysis revealed a reduction in the number of lipid droplets in strains overexpressing ABHD16B, consistent with the observed decrease in neutral lipids. Additionally, qRT-PCR analysis indicated a high phospholipid synthetic activity of ABHD16B and a potential decrease in TAG levels in wild-type yeast, possibly due to upregulation of endogenous TAG hydrolytic enzymes, as confirmed using <em>3tgls</em>Δ mutant strain. Furthermore, GC-MS analysis revealed significant modifications in fatty acid composition upon ABHD16B overexpression. Collectively, our results underscore the influence of ABHD16B overexpression on TAG levels, phospholipid synthesis, lipid droplet dynamics, and fatty acid composition. These findings reveal a complex interplay between TAG hydrolysis and phospholipid synthesis, highlighting the critical involvement of ABHD16B in lipid homeostasis and providing further insights into its regulatory function in cellular lipid metabolism.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000750/pdfft?md5=88c09caa313909654509f6e549ded1c5&pid=1-s2.0-S0009308423000750-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308423000750","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipids are essential biological macromolecules that play a pivotal role in various physiological processes and cellular homeostasis. ABHD16B, a member of the α/β-hydrolase domain (ABHD) superfamily protein, has emerged as a potential key regulator in lipid metabolism. However, the precise role of human ABHD16B in lipid metabolism remains unclear. In this study, we reported the overexpression of ABHD16B in Saccharomyces cerevisiae to determine its physiological relevance in lipid metabolism. Through in vivo [14C]acetate labeling experiments, we observed that overexpression of ABHD16B causes a decrease in cellular triacylglycerol (TAG) levels and a concurrent increase in phospholipid synthesis in wild-type cells. Mass spectrometry (LC–MS/MS) analysis further corroborated these findings, showing a significant decrease in TAGs with a carbon chain length of 48 and an increase in major phospholipid species, specifically 34:2, upon overexpression of ABHD16B. Confocal microscopy analysis revealed a reduction in the number of lipid droplets in strains overexpressing ABHD16B, consistent with the observed decrease in neutral lipids. Additionally, qRT-PCR analysis indicated a high phospholipid synthetic activity of ABHD16B and a potential decrease in TAG levels in wild-type yeast, possibly due to upregulation of endogenous TAG hydrolytic enzymes, as confirmed using 3tglsΔ mutant strain. Furthermore, GC-MS analysis revealed significant modifications in fatty acid composition upon ABHD16B overexpression. Collectively, our results underscore the influence of ABHD16B overexpression on TAG levels, phospholipid synthesis, lipid droplet dynamics, and fatty acid composition. These findings reveal a complex interplay between TAG hydrolysis and phospholipid synthesis, highlighting the critical involvement of ABHD16B in lipid homeostasis and providing further insights into its regulatory function in cellular lipid metabolism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阐明人ABHD16B脂肪酶在调节酿酒酵母三酰甘油动员和膜脂合成中的功能作用。
脂质是重要的生物大分子,在各种生理过程和细胞稳态中发挥着关键作用。ABHD16B是α/β-水解酶结构域(ABHD)超家族蛋白的一员,已成为脂质代谢的潜在关键调节因子。然而,人类ABHD16B在脂质代谢中的确切作用尚不清楚。在本研究中,我们报道了酿酒酵母中ABHD16B的过表达,以确定其在脂质代谢中的生理相关性。通过体内[14C]乙酸盐标记实验,我们观察到ABHD16B的过表达导致野生型细胞中细胞三酰甘油(TAG)水平降低,同时磷脂合成增加。质谱(LC-MS/MS)分析进一步证实了这些发现,显示在ABHD16B过表达后,碳链长度为48的TAG显著减少,主要磷脂种类增加,特别是34:2。共聚焦显微镜分析显示,在过表达ABHD16B的菌株中,脂滴数量减少,与观察到的中性脂质减少一致。此外,qRT-PCR分析表明,ABHD16B具有高磷脂合成活性,野生型酵母中TAG水平可能降低,这可能是由于内源性TAG水解酶的上调,如使用3tglsΔ突变株所证实的。此外,GC-MS分析显示ABHD16B过表达后脂肪酸组成发生了显著变化。总之,我们的研究结果强调了ABHD16B过表达对TAG水平、磷脂合成、脂滴动力学和脂肪酸组成的影响。这些发现揭示了TAG水解和磷脂合成之间的复杂相互作用,突出了ABHD16B在脂质稳态中的关键作用,并为其在细胞脂质代谢中的调节功能提供了进一步的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry and Physics of Lipids
Chemistry and Physics of Lipids 生物-生化与分子生物学
CiteScore
7.60
自引率
2.90%
发文量
50
审稿时长
40 days
期刊介绍: Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications. Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.
期刊最新文献
Use of stable isotope-labeled fatty acids to measure desaturase activities with negative chemical ionization GC-MS. Evidence for capture of spin-labeled ibuprofen drug molecules by lipid rafts in model membranes. Exploring the orphan immune receptor TREM2 and its non-protein ligands: In silico characterization. Molecular dynamics simulations of lipid composition and its impact on structural and dynamic properties of skin membrane Comparison between statistical and machine learning methods to detect the hematological indices with the greatest influence on elevated serum levels of low-density lipoprotein cholesterol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1