{"title":"Tuning the higher to lower order resonance frequency ratio and implementing the tunable THz MIMO/self-diplexing antenna","authors":"Durgesh Kumar, Vivek Kumar, Yadav Anand Subhash, Pushpa Giri, Gaurav Varshney","doi":"10.1016/j.nancom.2022.100419","DOIUrl":null,"url":null,"abstract":"<div><p><span>The frequency ratio of higher to lower order mode can be electronically tuned in a terahertz (THz) antenna with metallic radiator using a graphene loop. Antenna is designed with slotted metallic radiator to obtain the dual-band response with fundamental and second order transverse magnetic mode providing the directional and bi-directional radiation pattern in the lower and upper band, respectively. The insertion of graphene loop and varying its chemical potential (</span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) provides two resonances until <span><math><mrow><mn>0</mn><mo>.</mo><mn>4</mn><mspace></mspace><mi>eV</mi></mrow></math></span> and four resonances for further greater values of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span>. The desired impedance matching can be achieved at the frequencies of any two resonances at a time by selecting an appropriate value of </span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Antenna can operate with higher/lower order mode centred at frequency 3.77/3.02 THz and 4.39/2.86 THz for the values of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> as 0.9 and <span><math><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mspace></mspace><mi>eV</mi></mrow></math></span> , respectively. The frequency ratio of higher to lower order mode can be tuned within the range of 1.22–1.59 with the variation in <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span>. Also, application of graphene loop confines the radiated power in a single direction at the frequency of higher order mode making the radiation pattern consistent. Antenna can be utilized in future THz wireless applications which require the utilization of adjacent channels with different frequencies in communication. Also, a two-port antenna is designed which can offer the tunable multi-input–multi-output (MIMO) and self-diplexing capability with pattern diversity. The MIMO parameters; envelope correlation coefficient (ECC) and diversity gain (DG) is evaluated and their values are found within acceptable limits as ECC</span><span><math><mrow><mo><</mo><mn>0</mn><mo>.</mo><mn>06</mn></mrow></math></span> and DG<span><math><mrow><mo>></mo><mn>9</mn><mo>.</mo><mn>9</mn></mrow></math></span> in the operating bands.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"34 ","pages":"Article 100419"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778922000229","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 9
Abstract
The frequency ratio of higher to lower order mode can be electronically tuned in a terahertz (THz) antenna with metallic radiator using a graphene loop. Antenna is designed with slotted metallic radiator to obtain the dual-band response with fundamental and second order transverse magnetic mode providing the directional and bi-directional radiation pattern in the lower and upper band, respectively. The insertion of graphene loop and varying its chemical potential () provides two resonances until and four resonances for further greater values of . The desired impedance matching can be achieved at the frequencies of any two resonances at a time by selecting an appropriate value of . Antenna can operate with higher/lower order mode centred at frequency 3.77/3.02 THz and 4.39/2.86 THz for the values of as 0.9 and , respectively. The frequency ratio of higher to lower order mode can be tuned within the range of 1.22–1.59 with the variation in . Also, application of graphene loop confines the radiated power in a single direction at the frequency of higher order mode making the radiation pattern consistent. Antenna can be utilized in future THz wireless applications which require the utilization of adjacent channels with different frequencies in communication. Also, a two-port antenna is designed which can offer the tunable multi-input–multi-output (MIMO) and self-diplexing capability with pattern diversity. The MIMO parameters; envelope correlation coefficient (ECC) and diversity gain (DG) is evaluated and their values are found within acceptable limits as ECC and DG in the operating bands.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.