{"title":"Two-step daily reservoir inflow prediction using ARIMA-machine learning and ensemble models","authors":"Akshita Gupta, Arun Kumar","doi":"10.1016/j.jher.2022.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>The reservoirs play a crucial role in the development of civilisation as they facilitate the storage of water for multiple purposes like hydroelectric power generation, flood control, irrigation, and drinking water etc. In order to effectively meet these multiple purposes, the knowledge of the inflow in the reservoir is essential. Apart from the historical data, future prediction of the inflows is also necessary specially in context of climate change. A two-step algorithm for the prediction of reservoir inflow to enable meticulous planning and execution of daily reservoir operation keeping the historical variation of inflow in account has been proposed. The developed algorithm takes into account the patterns in the historic inflow data using the time series analysis along with the variability in the climatic patterns using the different predictors in the machine learning model. The first step uses time series model, ARIMA method to forecast the monthly inflows, which are then used as the targets in the second step for the month-wise daily forecasting of the inflows using the two types of ensemble models, namely, averaging and boosting models in machine learning. The test results show that for both the monthly models and daily models the NRMSE and NMAE values were low for the monsoon periods compared to the non-monsoon periods. The averaging ensemble models were found to perform better than the boosting ensemble models for maximum number of months. The yearly results show an error of less than 5% between actual and predicted values for all the test cases, showing the precision in the developed algorithm. Further, the uncertainty analysis shows that the prediction done using the weighted average of the different inflow scenarios performs better than the prediction against the single inflow scenario.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"45 ","pages":"Pages 39-52"},"PeriodicalIF":2.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644322000594","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The reservoirs play a crucial role in the development of civilisation as they facilitate the storage of water for multiple purposes like hydroelectric power generation, flood control, irrigation, and drinking water etc. In order to effectively meet these multiple purposes, the knowledge of the inflow in the reservoir is essential. Apart from the historical data, future prediction of the inflows is also necessary specially in context of climate change. A two-step algorithm for the prediction of reservoir inflow to enable meticulous planning and execution of daily reservoir operation keeping the historical variation of inflow in account has been proposed. The developed algorithm takes into account the patterns in the historic inflow data using the time series analysis along with the variability in the climatic patterns using the different predictors in the machine learning model. The first step uses time series model, ARIMA method to forecast the monthly inflows, which are then used as the targets in the second step for the month-wise daily forecasting of the inflows using the two types of ensemble models, namely, averaging and boosting models in machine learning. The test results show that for both the monthly models and daily models the NRMSE and NMAE values were low for the monsoon periods compared to the non-monsoon periods. The averaging ensemble models were found to perform better than the boosting ensemble models for maximum number of months. The yearly results show an error of less than 5% between actual and predicted values for all the test cases, showing the precision in the developed algorithm. Further, the uncertainty analysis shows that the prediction done using the weighted average of the different inflow scenarios performs better than the prediction against the single inflow scenario.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.