3D printed aluminum matrix composites with well-defined ordered structures of shear-induced aligned carbon fibers

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2022-12-01 DOI:10.1016/j.nanoms.2021.06.003
Yunhong Liang , Han Wu , Zhaohua Lin , Qingping Liu , Zhihui Zhang
{"title":"3D printed aluminum matrix composites with well-defined ordered structures of shear-induced aligned carbon fibers","authors":"Yunhong Liang ,&nbsp;Han Wu ,&nbsp;Zhaohua Lin ,&nbsp;Qingping Liu ,&nbsp;Zhihui Zhang","doi":"10.1016/j.nanoms.2021.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing. The microstructures of the printed and sintered samples and mechanical properties of the composites were investigated. Carbon fibers and aluminum powder were bonded together with resin. The spatial arrangement of the carbon fibers was fixed in the aluminum matrix by shear-induced alignment in the 3D printing process. As a result, the elongation of the composites with a parallel arrangement of aligned fibers and the impact toughness of the composites with an orthogonal arrangement were 0.82% and 0.41 ​J/cm<sup>2</sup>, respectively, about 0.4 and 0.8 times higher than that of the random arrangement.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"4 4","pages":"Pages 366-375"},"PeriodicalIF":9.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nanoms.2021.06.003","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965121000325","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Carbon fiber reinforced aluminum composites with ordered architectures of shear-induced aligned carbon fibers were fabricated by 3D printing. The microstructures of the printed and sintered samples and mechanical properties of the composites were investigated. Carbon fibers and aluminum powder were bonded together with resin. The spatial arrangement of the carbon fibers was fixed in the aluminum matrix by shear-induced alignment in the 3D printing process. As a result, the elongation of the composites with a parallel arrangement of aligned fibers and the impact toughness of the composites with an orthogonal arrangement were 0.82% and 0.41 ​J/cm2, respectively, about 0.4 and 0.8 times higher than that of the random arrangement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有剪切诱导排列碳纤维明确有序结构的3D打印铝基复合材料
采用3D打印方法制备了具有剪切诱导排列碳纤维有序结构的碳纤维增强铝复合材料。研究了印刷和烧结样品的微观结构以及复合材料的力学性能。碳纤维和铝粉用树脂粘合在一起。在3D打印过程中,通过剪切诱导排列将碳纤维的空间排列固定在铝基体中。结果,排列纤维平行排列的复合材料的伸长率和正交排列的复合物的冲击韧性分别为0.82%和0.41​J/cm2,分别是随机排列的约0.4和0.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Utilizing a defective MgO layer for engineering multifunctional Co-MOF hybrid materials with tailored leaf-like and polyhedral structures for optimal electrochemical and photocatalytic activities Silicon-based dielectric elastomer with amino-complexed hybrids towards high actuation performance Revisiting the mitigation of coke formation: Synergism between support & promoters' role toward robust yield in the CO2 reformation of methane Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour Structure transformation induced bi-component Co–Mo/A-Co(OH)2 as highly efficient hydrogen evolution catalyst in alkaline media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1