Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS R Journal Pub Date : 2011-12-01
Haizhou Wang, Mingzhou Song
{"title":"Ckmeans.1d.dp: Optimal <i>k</i>-means Clustering in One Dimension by Dynamic Programming.","authors":"Haizhou Wang, Mingzhou Song","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The heuristic <i>k</i>-means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called <b>Ckmeans.1d.dp</b>. We demonstrate its advantage in optimality and runtime over the standard iterative <i>k</i>-means algorithm.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"3 2","pages":"29-33"},"PeriodicalIF":2.3000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The heuristic k-means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp. We demonstrate its advantage in optimality and runtime over the standard iterative k-means algorithm.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ckmeans.1d.dp:动态规划的一维最优k均值聚类。
启发式k-均值算法被广泛用于聚类分析,但不能保证最优性。我们开发了一种用于最优一维聚类的动态规划算法。该算法被实现为一个名为Ckmeans.1d.dp的R包。我们证明了它在最优性和运行时间方面优于标准迭代k-means算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
期刊最新文献
binGroup2: Statistical Tools for Infection Identification via Group Testing. glmmPen: High Dimensional Penalized Generalized Linear Mixed Models. Three-Way Correspondence Analysis in R nlstac: Non-Gradient Separable Nonlinear Least Squares Fitting A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1