MicroRNA signature for interpretable breast cancer classification with subtype clue

Paolo Andreini , Simone Bonechi , Monica Bianchini , Filippo Geraci
{"title":"MicroRNA signature for interpretable breast cancer classification with subtype clue","authors":"Paolo Andreini ,&nbsp;Simone Bonechi ,&nbsp;Monica Bianchini ,&nbsp;Filippo Geraci","doi":"10.1016/j.jcmds.2022.100042","DOIUrl":null,"url":null,"abstract":"<div><p>MicroRNAs (miRNAs) are short non-coding RNAs engaged in cellular regulation by suppressing genes at their post-transcriptional stage. Evidence of their involvement in breast cancer and the possibility of quantifying the their concentration in the blood has sparked the hope of using them as reliable, inexpensive and non-invasive biomarkers.</p><p>While differential expression analysis succeeded in identifying groups of disregulated miRNAs among tumor and healthy samples, its intrinsic dual nature makes it inadequate for cancer subtype detection. Using artificial intelligence or machine learning to uncover complex profiles of miRNA expression associated with different breast cancer subtypes has poorly been investigated and only few recent works have explored this possibility. However, the use of the same dataset both for training and testing leaves the issue of the robustness of these results still open.</p><p>In this paper, we propose a two-stage method that leverages on two ad-hoc classifiers for tumor/healthy classification and subtype identification. We assess our results using two completely independent datasets: TGCA for training and GSE68085 for testing. Experiments show that our strategy is extraordinarily effective especially for tumor/healthy classification, where we achieved an accuracy of 0.99. Yet, by means of a feature importance mechanism, our method is able to display which miRNAs lead to every single sample classification so as to enable a personalized medicine approach to therapy as well as the algorithm explainability required by the EU GDPR regulation and other similar legislations.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"3 ","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000116/pdfft?md5=5ebd30b1a40a0f15df580e1b4efa8552&pid=1-s2.0-S2772415822000116-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

MicroRNAs (miRNAs) are short non-coding RNAs engaged in cellular regulation by suppressing genes at their post-transcriptional stage. Evidence of their involvement in breast cancer and the possibility of quantifying the their concentration in the blood has sparked the hope of using them as reliable, inexpensive and non-invasive biomarkers.

While differential expression analysis succeeded in identifying groups of disregulated miRNAs among tumor and healthy samples, its intrinsic dual nature makes it inadequate for cancer subtype detection. Using artificial intelligence or machine learning to uncover complex profiles of miRNA expression associated with different breast cancer subtypes has poorly been investigated and only few recent works have explored this possibility. However, the use of the same dataset both for training and testing leaves the issue of the robustness of these results still open.

In this paper, we propose a two-stage method that leverages on two ad-hoc classifiers for tumor/healthy classification and subtype identification. We assess our results using two completely independent datasets: TGCA for training and GSE68085 for testing. Experiments show that our strategy is extraordinarily effective especially for tumor/healthy classification, where we achieved an accuracy of 0.99. Yet, by means of a feature importance mechanism, our method is able to display which miRNAs lead to every single sample classification so as to enable a personalized medicine approach to therapy as well as the algorithm explainability required by the EU GDPR regulation and other similar legislations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微RNA标记用于具有亚型线索的可解释的乳腺癌症分类
微小RNA(miRNA)是一种短的非编码RNA,通过在转录后阶段抑制基因参与细胞调控。他们参与癌症的证据以及量化他们在血液中的浓度的可能性激发了将他们用作可靠、廉价和非侵入性生物标志物的希望。虽然差异表达分析成功地鉴定了肿瘤和健康样本中失调的miRNA组,但其内在的双重性质使其不足以检测癌症亚型。使用人工智能或机器学习来揭示与不同乳腺癌症亚型相关的miRNA表达的复杂图谱的研究很少,最近只有很少的工作探索了这种可能性。然而,在训练和测试中使用相同的数据集仍然存在这些结果的稳健性问题。在本文中,我们提出了一种两阶段方法,该方法利用两个自组织分类器进行肿瘤/健康分类和亚型识别。我们使用两个完全独立的数据集来评估我们的结果:用于训练的TGCA和用于测试的GSE68085。实验表明,我们的策略非常有效,尤其是在肿瘤/健康分类方面,我们的准确率达到了0.99。然而,通过特征重要性机制,我们的方法能够显示哪些miRNA导致每个样本分类,从而实现个性化的药物治疗方法,以及欧盟GDPR法规和其他类似立法所要求的算法可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1