Laser speckle spectroscopy—a new method for using small swimming organisms as biomonitors

J A Cole, M H Tinker
{"title":"Laser speckle spectroscopy—a new method for using small swimming organisms as biomonitors","authors":"J A Cole,&nbsp;M H Tinker","doi":"10.1002/1361-6374(199612)4:4<243::AID-BIO3>3.0.CO;2-E","DOIUrl":null,"url":null,"abstract":"<p>A novel method has been devised for the study of swimming organisms by using speckle patterns produced by their scattering of coherent laser light. The speckle patterns show fluctuations in space and time which may be correlated with the activity of the organisms. The fluctuations give an immediate indication of mobility and a more detailed analysis of the frequency spectrum of the speckle fluctuations shows characteristic resonance-like features which are specific to the organism. The speckle patterns produced by several protozoans, including <i>Paramecium bursaria, Entosiphon sulcatum</i>, and by the alga <i>Chlamydomonas reinhardii</i> and the rotifer <i>Brachionus calyciflorus</i> have been studied. Laser speckle spectroscopy (LSS) allows a rapid non-invasive monitoring of the activity of the organisms and could find application in ecotoxicity studies and environmental biomonitoring. The results presented here are the first reports of LSS and its use in this way and demonstrate its viability and potential for further development.</p>","PeriodicalId":100176,"journal":{"name":"Bioimaging","volume":"4 4","pages":"243-253"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1361-6374(199612)4:4<243::AID-BIO3>3.0.CO;2-E","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1361-6374%28199612%294%3A4%3C243%3A%3AAID-BIO3%3E3.0.CO%3B2-E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A novel method has been devised for the study of swimming organisms by using speckle patterns produced by their scattering of coherent laser light. The speckle patterns show fluctuations in space and time which may be correlated with the activity of the organisms. The fluctuations give an immediate indication of mobility and a more detailed analysis of the frequency spectrum of the speckle fluctuations shows characteristic resonance-like features which are specific to the organism. The speckle patterns produced by several protozoans, including Paramecium bursaria, Entosiphon sulcatum, and by the alga Chlamydomonas reinhardii and the rotifer Brachionus calyciflorus have been studied. Laser speckle spectroscopy (LSS) allows a rapid non-invasive monitoring of the activity of the organisms and could find application in ecotoxicity studies and environmental biomonitoring. The results presented here are the first reports of LSS and its use in this way and demonstrate its viability and potential for further development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光散斑光谱法——一种利用小型游泳生物作为生物监测器的新方法
利用相干激光散射产生的散斑图案,设计了一种研究游动生物的新方法。散斑图案显示了空间和时间上的波动,这可能与生物体的活动有关。波动提供了流动性的即时指示,并且对散斑波动的频谱的更详细分析显示了生物体特有的特征性共振样特征。研究了几种原生动物,包括草履虫、沟虫、莱茵衣藻和杯状臂尾轮虫产生的斑点图案。激光散斑光谱(LSS)可以对生物体的活动进行快速的非侵入性监测,并可应用于生态毒性研究和环境生物监测。本文给出的结果是LSS及其以这种方式使用的首次报告,并证明了其可行性和进一步开发的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetic Particle Imaging Magnetic Resonance Imaging Quantitative evaluation of light microscopes based on image processing techniques Confocal microscopy of single molecules of the green fluorescent protein Heavy metal contrast enhancement for the selective detection of gold particles in electron microscopical sections using electron spectroscopic imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1