Relations between scaling exponents in unimodular random graphs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-11-09 DOI:10.1007/s00039-023-00654-7
James R. Lee
{"title":"Relations between scaling exponents in unimodular random graphs","authors":"James R. Lee","doi":"10.1007/s00039-023-00654-7","DOIUrl":null,"url":null,"abstract":"<p>We investigate the validity of the “Einstein relations” in the general setting of unimodular random networks. These are equalities relating scaling exponents: </p><span> $$\\begin{aligned} d_{w} &amp;= d_{f} + \\tilde{\\zeta }, \\\\ d_{s} &amp;= 2 d_{f}/d_{w}, \\end{aligned}$$ </span><p> where <i>d</i><sub><i>w</i></sub> is the walk dimension, <i>d</i><sub><i>f</i></sub> is the fractal dimension, <i>d</i><sub><i>s</i></sub> is the spectral dimension, and <span>\\(\\tilde{\\zeta }\\)</span> is the resistance exponent. Roughly speaking, this relates the mean displacement and return probability of a random walker to the density and conductivity of the underlying medium. We show that if <i>d</i><sub><i>f</i></sub> and <span>\\(\\tilde{\\zeta } \\geqslant 0\\)</span> exist, then <i>d</i><sub><i>w</i></sub> and <i>d</i><sub><i>s</i></sub> exist, and the aforementioned equalities hold. Moreover, our primary new estimate <span>\\(d_{w} \\geqslant d_{f} + \\tilde{\\zeta }\\)</span> is established for all <span>\\(\\tilde{\\zeta } \\in \\mathbb{R}\\)</span>.</p><p>For the uniform infinite planar triangulation (UIPT), this yields the consequence <i>d</i><sub><i>w</i></sub>=4 using <i>d</i><sub><i>f</i></sub>=4 (Angel in Geom. Funct. Anal. 13(5):935–974, 2003) and <span>\\(\\tilde{\\zeta }=0\\)</span> (established here as a consequence of the Liouville Quantum Gravity theory, following Gwynne-Miller 2020 and (Ding and Gwynne in Commun. Math. Phys. 374(3):1877–1934, 2020)). The conclusion <i>d</i><sub><i>w</i></sub>=4 had been previously established by Gwynne and Hutchcroft (2018) using more elaborate methods. A new consequence is that <i>d</i><sub><i>w</i></sub>=<i>d</i><sub><i>f</i></sub> for the uniform infinite Schnyder-wood decorated triangulation, implying that the simple random walk is subdiffusive, since <i>d</i><sub><i>f</i></sub>&gt;2.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-023-00654-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

We investigate the validity of the “Einstein relations” in the general setting of unimodular random networks. These are equalities relating scaling exponents:

$$\begin{aligned} d_{w} &= d_{f} + \tilde{\zeta }, \\ d_{s} &= 2 d_{f}/d_{w}, \end{aligned}$$

where dw is the walk dimension, df is the fractal dimension, ds is the spectral dimension, and \(\tilde{\zeta }\) is the resistance exponent. Roughly speaking, this relates the mean displacement and return probability of a random walker to the density and conductivity of the underlying medium. We show that if df and \(\tilde{\zeta } \geqslant 0\) exist, then dw and ds exist, and the aforementioned equalities hold. Moreover, our primary new estimate \(d_{w} \geqslant d_{f} + \tilde{\zeta }\) is established for all \(\tilde{\zeta } \in \mathbb{R}\).

For the uniform infinite planar triangulation (UIPT), this yields the consequence dw=4 using df=4 (Angel in Geom. Funct. Anal. 13(5):935–974, 2003) and \(\tilde{\zeta }=0\) (established here as a consequence of the Liouville Quantum Gravity theory, following Gwynne-Miller 2020 and (Ding and Gwynne in Commun. Math. Phys. 374(3):1877–1934, 2020)). The conclusion dw=4 had been previously established by Gwynne and Hutchcroft (2018) using more elaborate methods. A new consequence is that dw=df for the uniform infinite Schnyder-wood decorated triangulation, implying that the simple random walk is subdiffusive, since df>2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单模随机图中标度指数之间的关系
研究了“爱因斯坦关系”在非模随机网络一般情况下的有效性。这些是与缩放指数相关的等式:$$\begin{aligned} d_{w} &= d_{f} + \tilde{\zeta }, \\ d_{s} &= 2 d_{f}/d_{w}, \end{aligned}$$其中dw是行走维数,df是分形维数,ds是光谱维数,\(\tilde{\zeta }\)是阻力指数。粗略地说,这将随机行走器的平均位移和返回概率与底层介质的密度和电导率联系起来。我们证明,如果df和\(\tilde{\zeta } \geqslant 0\)存在,则dw和ds存在,并且上述等式成立。此外,我们的主要新估计\(d_{w} \geqslant d_{f} + \tilde{\zeta }\)建立了所有\(\tilde{\zeta } \in \mathbb{R}\) .对于均匀无限平面三角剖分(UIPT),这产生了结果dw=4使用df=4 (Angel in Geom)。函数。数学学报,13(5):935-974,2003)和\(\tilde{\zeta }=0\)(作为Liouville量子引力理论的结果,在Gwynne- miller 2020和(Ding and Gwynne in commons)之后建立。数学。物理学报,34(3):1877 - 184,2020)。Gwynne和Hutchcroft(2018)之前使用更复杂的方法建立了dw=4的结论。对于均匀无限Schnyder-wood装饰三角剖分,一个新的结论是dw=df,这意味着简单随机漫步是次扩散的,因为df&gt;2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1