首页 > 最新文献

Geometric and Functional Analysis最新文献

英文 中文
Quadratic Forms in 8 Prime Variables 8素数变量的二次型
IF 2.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-12-05 DOI: 10.1007/s00039-025-00727-9
Ben Green
We give an asymptotic for the number of prime solutions to $Q(x_{1},dots , x_{8}) = N$ Q ( x 1 , , x 8 ) = N , subject to a mild non-degeneracy condition on the homogeneous quadratic form $Q$ Q . The argument initially proceeds via the circle method, but this does not suffice by itself. To obtain a nontrivial bound on certain averages of exponential sums, we interpret these sums as matrix coefficients for the Weil representation of the symplectic group $operatorname {Sp}_{8}(mathbf{Z}/qmathbf{Z})$ Sp 8 ( Z / q Z ) . Averages of such matrix coefficients are then bounded using an amplification argument and a convergence result for convolutions of measures, which reduces matters to understanding the action of certain 12-dimensional subgroups in the Weil representation. Sufficient understanding can be gained by using the basic represention theory of $operatorname {SL}_{2}(k)$ SL 2 ( k ) , $k$ k a finite field.
给出了$Q(x_{1},dots, x_{8}) = N$ Q(x 1,…,x 8) = N在齐次二次形式$Q$ Q上的一个温和的非退化条件下素数解个数的渐近性。参数最初通过circle方法进行,但这本身是不够的。为了得到指数和的某些平均值的非平凡界,我们将这些和解释为辛群$operatorname {Sp}_{8}(mathbf{Z}/qmathbf{Z})$ Sp 8 (Z /q Z)的Weil表示的矩阵系数。这样的矩阵系数的平均值然后使用一个放大论证和卷积测度的收敛结果有界,这减少了理解Weil表示中某些12维子群的作用的问题。利用有限域$operatorname {SL}_{2}(k)$ SL 2 (k), $k$ k的基本表示理论可以得到充分的理解。
{"title":"Quadratic Forms in 8 Prime Variables","authors":"Ben Green","doi":"10.1007/s00039-025-00727-9","DOIUrl":"https://doi.org/10.1007/s00039-025-00727-9","url":null,"abstract":"We give an asymptotic for the number of prime solutions to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Q(x_{1},dots , x_{8}) = N$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Q</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>8</mml:mn> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>N</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> , subject to a mild non-degeneracy condition on the homogeneous quadratic form <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Q$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Q</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> . The argument initially proceeds via the circle method, but this does not suffice by itself. To obtain a nontrivial bound on certain averages of exponential sums, we interpret these sums as matrix coefficients for the Weil representation of the symplectic group <jats:inline-formula> <jats:alternatives> <jats:tex-math>$operatorname {Sp}_{8}(mathbf{Z}/qmathbf{Z})$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mo>Sp</mml:mo> <mml:mn>8</mml:mn> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>Z</mml:mi> <mml:mo>/</mml:mo> <mml:mi>q</mml:mi> <mml:mi>Z</mml:mi> <mml:mo>)</mml:mo> </mml:math> </jats:alternatives> </jats:inline-formula> . Averages of such matrix coefficients are then bounded using an amplification argument and a convergence result for convolutions of measures, which reduces matters to understanding the action of certain 12-dimensional subgroups in the Weil representation. Sufficient understanding can be gained by using the basic represention theory of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$operatorname {SL}_{2}(k)$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mo>SL</mml:mo> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$k$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>k</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> a finite field.","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"56 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp Bound for the Erdős–Straus Non-averaging Set Problem Erdős-Straus非平均集问题的夏普界
IF 2.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-12-03 DOI: 10.1007/s00039-025-00728-8
Huy Tuan Pham, Dmitrii Zakharov
A set of integers $A$ A is non-averaging if there is no element $a$ a in $A$ A which can be written as an average of a subset of $A$ A not containing $a$ a . We show that the largest non-averaging subset of ${1, ldots , n}$ { 1 , , n } has size $n^{1/4+o(1)}$ n 1 / 4 + o ( 1 ) , thus solving the Erdős–Straus problem. We also determine the largest size of a non-averaging set in a $d$ d -dimensional box for any fixed $d$ d . Our main tool includes the structure theorem for the set of subset sums due to Conlon, Fox and the first author, together with a result about the structure of a point set in nearly convex position.
一组整数$A$ A是非平均的,如果$A$ A$ A中没有元素$A$ A,它可以写成$A$ A的一个子集$A$ A不包含$A$ A的平均值。我们证明了${1,ldots, n}${1,…,n}的最大非平均子集的大小为$n^{1/4+o(1)}$ n 1/4+o(1),从而解决了Erdős-Straus问题。对于任意固定的d$ d,我们还确定了d$ d维盒子中非平均集的最大大小。我们的主要工具包括Conlon, Fox和第一作者的子集和集的结构定理,以及关于近凸位置点集结构的结果。
{"title":"Sharp Bound for the Erdős–Straus Non-averaging Set Problem","authors":"Huy Tuan Pham, Dmitrii Zakharov","doi":"10.1007/s00039-025-00728-8","DOIUrl":"https://doi.org/10.1007/s00039-025-00728-8","url":null,"abstract":"A set of integers <jats:inline-formula> <jats:alternatives> <jats:tex-math>$A$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>A</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> is <jats:italic>non-averaging</jats:italic> if there is no element <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>a</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:tex-math>$A$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>A</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> which can be written as an average of a subset of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$A$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>A</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> not containing <jats:inline-formula> <jats:alternatives> <jats:tex-math>$a$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>a</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> . We show that the largest non-averaging subset of <jats:inline-formula> <jats:alternatives> <jats:tex-math>${1, ldots , n}$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>{</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>}</mml:mo> </mml:math> </jats:alternatives> </jats:inline-formula> has size <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n^{1/4+o(1)}$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:math> </jats:alternatives> </jats:inline-formula> , thus solving the Erdős–Straus problem. We also determine the largest size of a non-averaging set in a <jats:inline-formula> <jats:alternatives> <jats:tex-math>$d$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>d</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> -dimensional box for any fixed <jats:inline-formula> <jats:alternatives> <jats:tex-math>$d$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>d</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> . Our main tool includes the structure theorem for the set of subset sums due to Conlon, Fox and the first author, together with a result about the structure of a point set in nearly convex position.","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"140 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharpness and Locality for Percolation on Finite Transitive Graphs 有限传递图上渗透的锐性和局部性
IF 2.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-11-28 DOI: 10.1007/s00039-025-00726-w
Philip Easo
Let <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(G_{n}) = left ((V_{n},E_{n})right )$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>V</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> be a sequence of finite connected vertex-transitive graphs with uniformly bounded vertex degrees such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$lvert V_{n} rvert to infty $</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>|</mml:mo> <mml:msub> <mml:mi>V</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>|</mml:mo> <mml:mo>→</mml:mo> <mml:mi>∞</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n to infty $</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>n</mml:mi> <mml:mo>→</mml:mo> <mml:mi>∞</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> . We say that percolation on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$G_{n}$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> has a <jats:italic>sharp</jats:italic> phase transition (as <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n to infty $</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>n</mml:mi> <mml:mo>→</mml:mo> <mml:mi>∞</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> ) if, as the percolation parameter crosses some critical point, the number of vertices contained in the largest percolation cluster jumps from logarithmic to linear order with high probability. We prove that percolation on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$G_{n}$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> has a sharp phase transition unless, after passing to a subsequence, the rescaled graph-metric on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$G_{n}$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> (rapidly) converges to the unit circle with respect to the Gromov-Hausdorff metric. We deduce that under the same hypothesis, the critical point for the emergence of a giant (i.e. linear-sized) cluster in <jats:inline-formula> <jats:alternatives> <jats:t
设$(G_{n}) = left ((V_{n},E_{n})right )$ (gn) = (vn, en))是顶点度一致有界的有限连通顶点传递图序列,使得$lvert V_{n} rvert to infty $ | V n |→∞= $n to infty $ n→∞。如果当渗透参数越过某个临界点时,最大的渗透簇中包含的顶点数高概率地从对数阶跃到线性阶,我们说$G_{n}$ G n上的渗透具有急剧的相变($n to infty $ n→∞)。我们证明了$G_{n}$ gn上的渗流有一个急剧的相变,除非在传递到子序列之后,$G_{n}$ gn上的重标图度量(迅速)收敛到相对于Gromov-Hausdorff度量的单位圆。我们推断,在相同的假设下,$G_{n}$ G n中出现巨大(即线性大小)集群的临界点与$(G_{n})$ (G n)的Benjamini-Schramm极限中出现无限集群的临界点重合,当该极限存在时。
{"title":"Sharpness and Locality for Percolation on Finite Transitive Graphs","authors":"Philip Easo","doi":"10.1007/s00039-025-00726-w","DOIUrl":"https://doi.org/10.1007/s00039-025-00726-w","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$(G_{n}) = left ((V_{n},E_{n})right )$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;V&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;E&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be a sequence of finite connected vertex-transitive graphs with uniformly bounded vertex degrees such that &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$lvert V_{n} rvert to infty $&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mo&gt;|&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;V&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;|&lt;/mml:mo&gt; &lt;mml:mo&gt;→&lt;/mml:mo&gt; &lt;mml:mi&gt;∞&lt;/mml:mi&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; as &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$n to infty $&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;mml:mo&gt;→&lt;/mml:mo&gt; &lt;mml:mi&gt;∞&lt;/mml:mi&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; . We say that percolation on &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$G_{n}$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; has a &lt;jats:italic&gt;sharp&lt;/jats:italic&gt; phase transition (as &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$n to infty $&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;mml:mo&gt;→&lt;/mml:mo&gt; &lt;mml:mi&gt;∞&lt;/mml:mi&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; ) if, as the percolation parameter crosses some critical point, the number of vertices contained in the largest percolation cluster jumps from logarithmic to linear order with high probability. We prove that percolation on &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$G_{n}$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; has a sharp phase transition unless, after passing to a subsequence, the rescaled graph-metric on &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$G_{n}$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; (rapidly) converges to the unit circle with respect to the Gromov-Hausdorff metric. We deduce that under the same hypothesis, the critical point for the emergence of a giant (i.e. linear-sized) cluster in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:t","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillatory Integral Operators and Variable Schrödinger Propagators: Beyond the Universal Estimates 振荡积分算子与变量Schrödinger传播算子:超越一般估计
IF 2.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-11-19 DOI: 10.1007/s00039-025-00724-y
Mingfeng Chen, Shengwen Gan, Shaoming Guo, Jonathan Hickman, Marina Iliopoulou, James Wright
We consider a class of Hörmander-type oscillatory integral operators in $mathbb{R}^{n}$ R n for $n geq 3$ n 3 odd with real analytic phase. We derive weak conditions on the phase which ensure $L^{p}$ L p bounds beyond the universal $p geq 2 cdot frac{n+1}{n-1}$ p 2 n + 1 n 1 range guaranteed by Stein’s oscillatory integral theorem. This expands and elucidates pioneering work of Bourgain from the early 1990s. We also consider a closely related class of variable coefficient Schrödinger propagator-type operators, and show that the corresponding theory differs significantly from that of the Hörmander-type operators. The main ingredient in the proof is a curved Kakeya/Nikodym maximal function estimate. This is established by combining the polynomial method with certain uniform sublevel set estimates for real analytic functions. The sublevel set estimates are the main novelty in the argument and can be interpreted as a form of quantification of linear independence in the $C^{omega }$ C ω category.
考虑了在$mathbb{R}^{n}$ R n中,当$n geq 3$ n≥3奇时,一类具有实解析相的Hörmander-type振荡积分算子。我们在相位上导出了保证$L^{p}$ L p界超出Stein振荡积分定理所保证的$p geq 2 cdot frac{n+1}{n-1}$ p≥2⋅n + 1 n−1范围的弱条件。这是对20世纪90年代初布尔甘的开创性工作的扩展和阐释。我们还考虑了一类密切相关的变系数Schrödinger传播算子,并证明了相应的理论与Hörmander-type算子的理论有很大的不同。证明的主要成分是一个弯曲的Kakeya/Nikodym极大函数估计。这是将多项式方法与实解析函数的若干一致子水平集估计相结合建立起来的。子水平集估计是论证中的主要新颖之处,可以解释为$C^{omega }$ C ω类别中线性独立性的一种量化形式。
{"title":"Oscillatory Integral Operators and Variable Schrödinger Propagators: Beyond the Universal Estimates","authors":"Mingfeng Chen, Shengwen Gan, Shaoming Guo, Jonathan Hickman, Marina Iliopoulou, James Wright","doi":"10.1007/s00039-025-00724-y","DOIUrl":"https://doi.org/10.1007/s00039-025-00724-y","url":null,"abstract":"We consider a class of Hörmander-type oscillatory integral operators in <jats:inline-formula> <jats:alternatives> <jats:tex-math>$mathbb{R}^{n}$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>R</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n geq 3$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:math> </jats:alternatives> </jats:inline-formula> odd with real analytic phase. We derive weak conditions on the phase which ensure <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L^{p}$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> </jats:alternatives> </jats:inline-formula> bounds beyond the universal <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p geq 2 cdot frac{n+1}{n-1}$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>p</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> <mml:mo>⋅</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfrac> </mml:math> </jats:alternatives> </jats:inline-formula> range guaranteed by Stein’s oscillatory integral theorem. This expands and elucidates pioneering work of Bourgain from the early 1990s. We also consider a closely related class of variable coefficient Schrödinger propagator-type operators, and show that the corresponding theory differs significantly from that of the Hörmander-type operators. The main ingredient in the proof is a curved Kakeya/Nikodym maximal function estimate. This is established by combining the polynomial method with certain uniform sublevel set estimates for real analytic functions. The sublevel set estimates are the main novelty in the argument and can be interpreted as a form of quantification of linear independence in the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$C^{omega }$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>C</mml:mi> <mml:mi>ω</mml:mi> </mml:msup> </mml:math> </jats:alternatives> </jats:inline-formula> category.","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"19 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145545972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonnegative Cross-Curvature in Infinite Dimensions: Synthetic Definition and Spaces of Measures 无限维的非负交叉曲率:综合定义和测度空间
IF 2.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-11-11 DOI: 10.1007/s00039-025-00725-x
Flavien Léger, Gabriele Todeschi, François-Xavier Vialard
{"title":"Nonnegative Cross-Curvature in Infinite Dimensions: Synthetic Definition and Spaces of Measures","authors":"Flavien Léger, Gabriele Todeschi, François-Xavier Vialard","doi":"10.1007/s00039-025-00725-x","DOIUrl":"https://doi.org/10.1007/s00039-025-00725-x","url":null,"abstract":"","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145485494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
$mathbb{H}^{p,q}$-Convex Cocompactness and Higher Higher Teichmüller Spaces $mathbb{H}^{p,q}$-凸紧性与Higher Higher teichmller空间
IF 2.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-11-11 DOI: 10.1007/s00039-025-00719-9
Jonas Beyrer, Fanny Kassel
{"title":"$mathbb{H}^{p,q}$-Convex Cocompactness and Higher Higher Teichmüller Spaces","authors":"Jonas Beyrer, Fanny Kassel","doi":"10.1007/s00039-025-00719-9","DOIUrl":"https://doi.org/10.1007/s00039-025-00719-9","url":null,"abstract":"","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"2 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145485495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circle Bundles with PSC over Large Manifolds 圆束与PSC在大型歧管
IF 2.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-10-31 DOI: 10.1007/s00039-025-00723-z
Aditya Kumar, Balarka Sen
We construct infinitely many examples of macroscopically large manifolds of dimension $m geq 4$ m 4 equipped with circle bundles whose total spaces admit metrics of positive scalar curvature and have macroscopic dimension at most $lceil m/2 rceil + 1$ m / 2 + 1 . In particular, we answer a question of Gromov on the existence of circle bundles over enlargeable manifolds whose total spaces admit metrics of positive scalar curvature, in all dimensions. Our constructions are based on techniques from symplectic geometry.
我们构造了无限多个具有圆束的尺寸为$m geq 4$ m≥4的宏观大流形的例子,这些流形的总空间允许正标量曲率的度量,并且宏观维数不超过$lceil m/2 rceil + 1$≥≥≥≥1。特别地,我们回答了Gromov关于可放大流形上圆束存在性的问题,其总空间在所有维度上允许正标量曲率的度量。我们的构造是基于辛几何的技术。
{"title":"Circle Bundles with PSC over Large Manifolds","authors":"Aditya Kumar, Balarka Sen","doi":"10.1007/s00039-025-00723-z","DOIUrl":"https://doi.org/10.1007/s00039-025-00723-z","url":null,"abstract":"We construct infinitely many examples of macroscopically large manifolds of dimension <jats:inline-formula> <jats:alternatives> <jats:tex-math>$m geq 4$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>m</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:math> </jats:alternatives> </jats:inline-formula> equipped with circle bundles whose total spaces admit metrics of positive scalar curvature and have macroscopic dimension at most <jats:inline-formula> <jats:alternatives> <jats:tex-math>$lceil m/2 rceil + 1$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>⌈</mml:mo> <mml:mi>m</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>⌉</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:math> </jats:alternatives> </jats:inline-formula> . In particular, we answer a question of Gromov on the existence of circle bundles over enlargeable manifolds whose total spaces admit metrics of positive scalar curvature, in all dimensions. Our constructions are based on techniques from symplectic geometry.","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145404392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Affirmative Resolution of Bourgain’s Slicing Problem Using Guan’s Bound 用关界肯定解Bourgain的切片问题
IF 2.2 1区 数学 Q1 MATHEMATICS Pub Date : 2025-09-01 DOI: 10.1007/s00039-025-00718-w
Boaz Klartag, Joseph Lehec

We provide the final step in the resolution of Bourgain’s slicing problem in the affirmative. Thus we establish the following theorem: for any convex body K subseteq mathbb{R}^{n} of volume one, there exists a hyperplane H subseteq mathbb{R}^{n} such that

Vol_{n-1}(K cap H) > c,
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1