Sachin Srivastava, Amit Kumar Thakur, Lovi Raj Gupta, Anita Gehlot
{"title":"Numerical modeling of hybrid rocket engine","authors":"Sachin Srivastava, Amit Kumar Thakur, Lovi Raj Gupta, Anita Gehlot","doi":"10.1007/s42401-023-00241-6","DOIUrl":null,"url":null,"abstract":"<div><p>Recent development in space mission demands safer and more cost-effective space missions. Hybrid rocket engine technological advancements have prolonged a critical stage in their development and it is the better option for such space missions, as it has a lot of advantages over the solid rocket motor and liquid rocket engine. It is simple in design, has high thrust density, low weight, and is safer than a liquid rocket engine. It has restarted capability, safe, low explosion risk, and high specific impulse than a solid rocket motor. This paper shows the numerical analysis of a hybrid rocket engine. The paper highlights the initial boundary conditions in the analysis of a 300-N hybrid rocket engine. The process started with a chemical kinematic examination of engine-compatible fuels and oxidizers. This investigation provided the fundamental parameters required for the design and subsequent dimensioning of a hybrid rocket engine. It also produced a three-dimensional design model, performed numerical analysis using ANSYS software, and validated the findings using existing literature. Using the <i>k</i>–<span>\\(\\varepsilon\\)</span> turbulence model and transient solver on 8 mm port diameter for analyzing. The computational fluid dynamics model offered the qualities of a real hybrid rocket engine and it will be helpful to researchers and the scientific community in the future.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"6 4","pages":"641 - 654"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00241-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Recent development in space mission demands safer and more cost-effective space missions. Hybrid rocket engine technological advancements have prolonged a critical stage in their development and it is the better option for such space missions, as it has a lot of advantages over the solid rocket motor and liquid rocket engine. It is simple in design, has high thrust density, low weight, and is safer than a liquid rocket engine. It has restarted capability, safe, low explosion risk, and high specific impulse than a solid rocket motor. This paper shows the numerical analysis of a hybrid rocket engine. The paper highlights the initial boundary conditions in the analysis of a 300-N hybrid rocket engine. The process started with a chemical kinematic examination of engine-compatible fuels and oxidizers. This investigation provided the fundamental parameters required for the design and subsequent dimensioning of a hybrid rocket engine. It also produced a three-dimensional design model, performed numerical analysis using ANSYS software, and validated the findings using existing literature. Using the k–\(\varepsilon\) turbulence model and transient solver on 8 mm port diameter for analyzing. The computational fluid dynamics model offered the qualities of a real hybrid rocket engine and it will be helpful to researchers and the scientific community in the future.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion