Analysis of Mixing Processes of LPG Gases in Tanks When Transporting by Sea

L. Morozyuk, B. Kosoy, Viktoriia Sokolovska-Yefymenko, V. Ierin
{"title":"Analysis of Mixing Processes of LPG Gases in Tanks When Transporting by Sea","authors":"L. Morozyuk, B. Kosoy, Viktoriia Sokolovska-Yefymenko, V. Ierin","doi":"10.3390/dynamics2030011","DOIUrl":null,"url":null,"abstract":"The present study is an analysis of the processes in the components of the LPG (propane/butane) reliquefaction plant under the conditions of co-mingling in tanks when transporting by sea. For the analysis, the monitoring data of an LPG cargo operation have been used. An energy analysis of the mixture-based reliquefaction plant has been performed. The characteristics of the mixture in the tanks, the operating conditions of the reliquefaction plant, and the performance of the system have been considered. The method of equivalence has been applied for thermodynamic analysis. The result of the substitution of actual processes with equivalent ones allows for the accomplishment of the parameters control of each working fluid within the mixture as a pure working fluid. It is shown that the low-boiling component determines the operating parameters of the entire reliquefaction plant. The method of equivalence and visualization of the processes within the LPG as a mixture using the thermodynamic diagrams of pure working fluids is recommended to shorten the path to set up the appropriate reliquefaction plant management strategy. The energy analysis performed using the method of equivalent cycles has been validated with the existing reliquefaction plant characteristics. The inaccuracies are in the limit of 4%.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics2030011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The present study is an analysis of the processes in the components of the LPG (propane/butane) reliquefaction plant under the conditions of co-mingling in tanks when transporting by sea. For the analysis, the monitoring data of an LPG cargo operation have been used. An energy analysis of the mixture-based reliquefaction plant has been performed. The characteristics of the mixture in the tanks, the operating conditions of the reliquefaction plant, and the performance of the system have been considered. The method of equivalence has been applied for thermodynamic analysis. The result of the substitution of actual processes with equivalent ones allows for the accomplishment of the parameters control of each working fluid within the mixture as a pure working fluid. It is shown that the low-boiling component determines the operating parameters of the entire reliquefaction plant. The method of equivalence and visualization of the processes within the LPG as a mixture using the thermodynamic diagrams of pure working fluids is recommended to shorten the path to set up the appropriate reliquefaction plant management strategy. The energy analysis performed using the method of equivalent cycles has been validated with the existing reliquefaction plant characteristics. The inaccuracies are in the limit of 4%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液化石油气海上运输罐内混合过程分析
本文分析了液化石油气(丙烷/丁烷)再液化装置在储罐共混条件下的过程。为了进行分析,我们使用了一次液化石油气货运的监测数据。对混合式再液化装置进行了能量分析。考虑了罐内混合物的特性、再液化装置的运行条件和系统的性能。等效法已应用于热力学分析。用等效过程代替实际过程的结果允许将混合物中的每种工作流体作为纯工作流体进行参数控制。结果表明,低沸组分决定了整个再液化装置的运行参数。建议使用纯工作流体的热力学图对液化石油气作为混合物的过程进行等效和可视化,以缩短路径,从而建立适当的再液化工厂管理策略。利用等效循环方法进行的能量分析已与现有再液化装置的特性进行了验证。误差在4%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Transition from Stability to Chaos through Random Matrices Robust Global Trends during Pandemics: Analysing the Interplay of Biological and Social Processes Unveiling Dynamical Symmetries in 2D Chaotic Iterative Maps with Ordinal-Patterns-Based Complexity Quantifiers Thermal Hydraulics Simulation of a Water Spray System for a Cooling Fluid Catalytic Cracking (FCC) Regenerator Investigation of Jamming Phenomenon in a Direct Reduction Furnace Pellet Feed System Using the Discrete Element Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1