Microstructure and mechanical properties of 15-5 PH stainless steel under different aging temperature

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Metallurgical Research & Technology Pub Date : 2021-01-01 DOI:10.1051/metal/2021078
Chunhui Jin, Honglin Zhou, L. Yuan, Bei Li, Zhang Kewei, C. Huiqin, Zhao Jinhua
{"title":"Microstructure and mechanical properties of 15-5 PH stainless steel under different aging temperature","authors":"Chunhui Jin, Honglin Zhou, L. Yuan, Bei Li, Zhang Kewei, C. Huiqin, Zhao Jinhua","doi":"10.1051/metal/2021078","DOIUrl":null,"url":null,"abstract":"The influence of aging temperature on microstructure and mechanical properties of Cr15Ni5 precipitation hardening stainless steel (15-5 PH stainless steel) were investigated at aging temperature range of 440–610 °C. The tensile properties at ambient temperature of the 15-5 PH stainless steel processed by different aging temperatures were tested, and the microstructural features were further analyzed utilizing optical microscope (OM), transmission electron microscope (TEM), electron backscatter diffraction (EBSD) as well as X-ray diffraction (XRD), respectively. Results indicated the strength of the 15-5 PH stainless steel was firstly decreased with increment of aging temperature from 440 to 540 °C, and then increased with the increment of aging temperature from 540 to 610 °C. The strength and ductility were well matched at aging temperature 470 °C, and the yield strength, tensile strength as well as elongation were determined to be 1170 MPa, 1240 MPa and 24%, respectively. The microstructures concerning to different aging temperatures were overall confirmed to be lath martensite. The strengthening mechanisms induced by dislocation density and the second phase precipitation of Cu-enriched metallic compound under different aging temperatures were determined to be the predominant strengthening mechanisms controlling the variation trend of mechanical properties corresponding to different aging temperatures with respect to 15-5 PH stainless steel.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"42 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021078","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2

Abstract

The influence of aging temperature on microstructure and mechanical properties of Cr15Ni5 precipitation hardening stainless steel (15-5 PH stainless steel) were investigated at aging temperature range of 440–610 °C. The tensile properties at ambient temperature of the 15-5 PH stainless steel processed by different aging temperatures were tested, and the microstructural features were further analyzed utilizing optical microscope (OM), transmission electron microscope (TEM), electron backscatter diffraction (EBSD) as well as X-ray diffraction (XRD), respectively. Results indicated the strength of the 15-5 PH stainless steel was firstly decreased with increment of aging temperature from 440 to 540 °C, and then increased with the increment of aging temperature from 540 to 610 °C. The strength and ductility were well matched at aging temperature 470 °C, and the yield strength, tensile strength as well as elongation were determined to be 1170 MPa, 1240 MPa and 24%, respectively. The microstructures concerning to different aging temperatures were overall confirmed to be lath martensite. The strengthening mechanisms induced by dislocation density and the second phase precipitation of Cu-enriched metallic compound under different aging temperatures were determined to be the predominant strengthening mechanisms controlling the variation trend of mechanical properties corresponding to different aging temperatures with respect to 15-5 PH stainless steel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
15-5 PH不锈钢在不同时效温度下的组织与力学性能
在440 ~ 610℃时效温度范围内,研究了时效温度对Cr15Ni5沉淀硬化不锈钢(15-5 PH不锈钢)组织和力学性能的影响。采用光学显微镜(OM)、透射电镜(TEM)、电子背散射衍射(EBSD)和x射线衍射(XRD)分析了经不同时效温度处理的15-5 PH不锈钢的室温拉伸性能,并对其微观组织特征进行了分析。结果表明:随着时效温度从440℃升高到540℃,15-5 PH不锈钢的强度先降低,然后随着时效温度从540℃升高到610℃而升高;时效温度为470℃时,强度和塑性匹配良好,屈服强度为1170 MPa,抗拉强度为1240 MPa,伸长率为24%。不同时效温度下的显微组织均为板条马氏体。在不同时效温度下,位错密度和富cu金属化合物的第二相析出是控制15-5 PH不锈钢力学性能变化趋势的主要强化机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
期刊最新文献
Bend forming of aluminum alloy integral panel: a review Kinetic and mechanical properties of boronized AISI 1020 steel with Baybora-2 powder The method of reducing energy consumption in large blast furnace smelting by increasing top pressure Distribution behavior and deportation of arsenic in copper top-blown smelting process Effect of slag properties and non-uniform bottom blowing gas supply mode on fluid flow and mixing behavior in converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1