Microwave Microscopy and Its Applications

IF 10.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Annual Review of Materials Research Pub Date : 2020-07-01 DOI:10.1146/annurev-matsci-081519-011844
Zhaodong Chu, Lu Zheng, K. Lai
{"title":"Microwave Microscopy and Its Applications","authors":"Zhaodong Chu, Lu Zheng, K. Lai","doi":"10.1146/annurev-matsci-081519-011844","DOIUrl":null,"url":null,"abstract":"Understanding the nanoscale electrodynamic properties of a material at microwave frequencies is of great interest for materials science, condensed matter physics, device engineering, and biology. With specialized probes, sensitive detection electronics, and improved scanning platforms, microwave microscopy has become an important tool for cutting-edge materials research in the past decade. In this article, we review the basic components and data interpretation of microwave imaging and its broad range of applications. In addition to the general-purpose mapping of permittivity and conductivity, microwave microscopy is now exploited to perform quantitative measurements on semiconductor devices, photosensitive materials, ferroelectric domains and domain walls, and acoustic-wave systems. Implementation of the technique in low-temperature and high-magnetic-field chambers has also led to major discoveries in quantum materials with strong correlation and topological order. We conclude the review with an outlook of the ultimate resolution, operation frequency, and future industrial and academic applications of near-field microwave microscopy.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"43 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-matsci-081519-011844","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-081519-011844","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 16

Abstract

Understanding the nanoscale electrodynamic properties of a material at microwave frequencies is of great interest for materials science, condensed matter physics, device engineering, and biology. With specialized probes, sensitive detection electronics, and improved scanning platforms, microwave microscopy has become an important tool for cutting-edge materials research in the past decade. In this article, we review the basic components and data interpretation of microwave imaging and its broad range of applications. In addition to the general-purpose mapping of permittivity and conductivity, microwave microscopy is now exploited to perform quantitative measurements on semiconductor devices, photosensitive materials, ferroelectric domains and domain walls, and acoustic-wave systems. Implementation of the technique in low-temperature and high-magnetic-field chambers has also led to major discoveries in quantum materials with strong correlation and topological order. We conclude the review with an outlook of the ultimate resolution, operation frequency, and future industrial and academic applications of near-field microwave microscopy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波显微镜及其应用
了解材料在微波频率下的纳米级电动力学特性对材料科学、凝聚态物理、器件工程和生物学都有很大的意义。在过去的十年里,微波显微镜凭借专门的探针、灵敏的检测电子设备和改进的扫描平台,已成为前沿材料研究的重要工具。本文综述了微波成像的基本组成、数据解释及其广泛的应用。除了介电常数和电导率的通用映射外,微波显微镜现在还被用于对半导体器件,光敏材料,铁电畴和畴壁以及声波系统进行定量测量。在低温和高磁场室中实现该技术也导致了具有强相关性和拓扑秩序的量子材料的重大发现。最后,对近场微波显微镜的最终分辨率、工作频率以及未来的工业和学术应用进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Materials Research
Annual Review of Materials Research 工程技术-材料科学:综合
CiteScore
17.70
自引率
1.00%
发文量
21
期刊介绍: The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.
期刊最新文献
Chemical Botany: Bottlebrush Polymers in Materials Science Circular Steel for Fast Decarbonization: Thermodynamics, Kinetics, and Microstructure Behind Upcycling Scrap into High-Performance Sheet Steel Structural Chirality and Electronic Chirality in Quantum Materials Degradation Processes in Current Commercialized Li-Ion Batteries and Strategies to Mitigate Them Oxygen Redox in Alkali-Ion Battery Cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1