MW Stubberud, CR Nater, Y. Vindenes, L. Vøllestad, Ø. Langangen
{"title":"Low impact of first-time spawners on population growth in a brown trout population","authors":"MW Stubberud, CR Nater, Y. Vindenes, L. Vøllestad, Ø. Langangen","doi":"10.3354/CR01645","DOIUrl":null,"url":null,"abstract":"For species with individual variation in reproductive success, experience in breeding and the distribution of different breeders is important for population productivity and viability. Human impacts, such as climate change and harvesting, can alter this distribution and thus population dynamics. Here, we investigated the effect of spawning experience on population growth in a population of migratory brown trout Salmo trutta subject to stressors including migration barriers, harvesting, and climate change. We described the population dynamics with a structured integral projection model that differentiates between first-time and repeat spawners. We then took a scenario-based approach to test to which extent spawning experience has a positive effect on the population growth of brown trout by running 3 different model simulations: a baseline scenario with no changes to the reproductive output of the population, a non-selective scenario in which the reproductive output of all spawners was reduced, and a selective scenario where the reproductive output of only first-time spawners was reduced. We found that the reproductive output of repeat spawners is more important than that of first-time spawners for population growth, in line with other studies. Moreover, the contribution of first-time spawners to the population growth through their own survival is more important than their contribution to growth through reproduction. To ensure the continued existence of the study population, survival of first-time spawners and reproductive success of repeat spawners should be prioritised. More generally, including breeding experience adds more mechanistic detail, which ultimately can aid management and conservation efforts.","PeriodicalId":10438,"journal":{"name":"Climate Research","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3354/CR01645","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
For species with individual variation in reproductive success, experience in breeding and the distribution of different breeders is important for population productivity and viability. Human impacts, such as climate change and harvesting, can alter this distribution and thus population dynamics. Here, we investigated the effect of spawning experience on population growth in a population of migratory brown trout Salmo trutta subject to stressors including migration barriers, harvesting, and climate change. We described the population dynamics with a structured integral projection model that differentiates between first-time and repeat spawners. We then took a scenario-based approach to test to which extent spawning experience has a positive effect on the population growth of brown trout by running 3 different model simulations: a baseline scenario with no changes to the reproductive output of the population, a non-selective scenario in which the reproductive output of all spawners was reduced, and a selective scenario where the reproductive output of only first-time spawners was reduced. We found that the reproductive output of repeat spawners is more important than that of first-time spawners for population growth, in line with other studies. Moreover, the contribution of first-time spawners to the population growth through their own survival is more important than their contribution to growth through reproduction. To ensure the continued existence of the study population, survival of first-time spawners and reproductive success of repeat spawners should be prioritised. More generally, including breeding experience adds more mechanistic detail, which ultimately can aid management and conservation efforts.
期刊介绍:
Basic and applied research devoted to all aspects of climate – past, present and future. Investigation of the reciprocal influences between climate and organisms (including climate effects on individuals, populations, ecological communities and entire ecosystems), as well as between climate and human societies. CR invites high-quality Research Articles, Reviews, Notes and Comments/Reply Comments (see Clim Res 20:187), CR SPECIALS and Opinion Pieces. For details see the Guidelines for Authors. Papers may be concerned with:
-Interactions of climate with organisms, populations, ecosystems, and human societies
-Short- and long-term changes in climatic elements, such as humidity and precipitation, temperature, wind velocity and storms, radiation, carbon dioxide, trace gases, ozone, UV radiation
-Human reactions to climate change; health, morbidity and mortality; clothing and climate; indoor climate management
-Climate effects on biotic diversity. Paleoecology, species abundance and extinction, natural resources and water levels
-Historical case studies, including paleoecology and paleoclimatology
-Analysis of extreme climatic events, their physicochemical properties and their time–space dynamics. Climatic hazards
-Land-surface climatology. Soil degradation, deforestation, desertification
-Assessment and implementation of adaptations and response options
-Applications of climate models and modelled future climate scenarios. Methodology in model development and application