Yuqing Hu, Jun-Cheng Chen, Bo-Han Kung, K. Hua, Daniel Stanley Tan
{"title":"Naturalistic Physical Adversarial Patch for Object Detectors","authors":"Yuqing Hu, Jun-Cheng Chen, Bo-Han Kung, K. Hua, Daniel Stanley Tan","doi":"10.1109/ICCV48922.2021.00775","DOIUrl":null,"url":null,"abstract":"Most prior works on physical adversarial attacks mainly focus on the attack performance but seldom enforce any restrictions over the appearance of the generated adversarial patches. This leads to conspicuous and attention-grabbing patterns for the generated patches which can be easily identified by humans. To address this issue, we pro-pose a method to craft physical adversarial patches for object detectors by leveraging the learned image manifold of a pretrained generative adversarial network (GAN) (e.g., BigGAN and StyleGAN) upon real-world images. Through sampling the optimal image from the GAN, our method can generate natural looking adversarial patches while maintaining high attack performance. With extensive experiments on both digital and physical domains and several independent subjective surveys, the results show that our proposed method produces significantly more realistic and natural looking patches than several state-of-the-art base-lines while achieving competitive attack performance. 1","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"54 1","pages":"7828-7837"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65
Abstract
Most prior works on physical adversarial attacks mainly focus on the attack performance but seldom enforce any restrictions over the appearance of the generated adversarial patches. This leads to conspicuous and attention-grabbing patterns for the generated patches which can be easily identified by humans. To address this issue, we pro-pose a method to craft physical adversarial patches for object detectors by leveraging the learned image manifold of a pretrained generative adversarial network (GAN) (e.g., BigGAN and StyleGAN) upon real-world images. Through sampling the optimal image from the GAN, our method can generate natural looking adversarial patches while maintaining high attack performance. With extensive experiments on both digital and physical domains and several independent subjective surveys, the results show that our proposed method produces significantly more realistic and natural looking patches than several state-of-the-art base-lines while achieving competitive attack performance. 1