General ternary bit strings on commodity longest-prefix-match infrastructures

P. Chuprikov, Kirill Kogan, S. Nikolenko
{"title":"General ternary bit strings on commodity longest-prefix-match infrastructures","authors":"P. Chuprikov, Kirill Kogan, S. Nikolenko","doi":"10.1109/ICNP.2017.8117542","DOIUrl":null,"url":null,"abstract":"Ternary Content-Addressable Memory (tcam) is a powerful tool to represent network services with line-rate lookup time. There are various software-based approaches to represent multi-field packet classifiers. Unfortunately, all of them either require exponential memory or apply additional constraints on field representations (e.g, prefixes or exact values) to have line-rate lookup time. In this work, we propose alternatives to tcam and introduce a novel approach to represent packet classifiers based on ternary bit strings (without constraining field representation) on commodity longest-prefix-match (lpm) infrastructures. These representations are built on a novel property, prefix reorderability, that defines how to transform an ordered set of ternary bit strings to prefixes with lpm priorities in linear memory. Our results are supported by evaluations on large-scale packet classifiers with real parameters from ClassBench; moreover, we have developed a prototype in P4 to support these types of transformations.","PeriodicalId":6462,"journal":{"name":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","volume":"940 ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2017.8117542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Ternary Content-Addressable Memory (tcam) is a powerful tool to represent network services with line-rate lookup time. There are various software-based approaches to represent multi-field packet classifiers. Unfortunately, all of them either require exponential memory or apply additional constraints on field representations (e.g, prefixes or exact values) to have line-rate lookup time. In this work, we propose alternatives to tcam and introduce a novel approach to represent packet classifiers based on ternary bit strings (without constraining field representation) on commodity longest-prefix-match (lpm) infrastructures. These representations are built on a novel property, prefix reorderability, that defines how to transform an ordered set of ternary bit strings to prefixes with lpm priorities in linear memory. Our results are supported by evaluations on large-scale packet classifiers with real parameters from ClassBench; moreover, we have developed a prototype in P4 to support these types of transformations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商品最长前缀匹配基础结构上的一般三元比特串
三元内容可寻址内存(tcam)是一种强大的工具,可以用行速率查找时间表示网络服务。有各种基于软件的方法来表示多字段包分类器。不幸的是,它们要么需要指数级内存,要么对字段表示(例如,前缀或精确值)施加额外的限制,以获得行率查找时间。在这项工作中,我们提出了tcam的替代方案,并引入了一种新的方法来表示基于商品最长前缀匹配(lpm)基础设施上的三元比特串(不限制字段表示)的包分类器。这些表示是建立在前缀可重排序性这个新特性之上的,它定义了如何将有序的三元比特串集合转换为线性内存中具有lpm优先级的前缀。我们的结果得到了ClassBench对具有真实参数的大规模包分类器的评估的支持;此外,我们在P4中开发了一个原型来支持这些类型的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-tier Collaborative Deep Reinforcement Learning for Non-terrestrial Network Empowered Vehicular Connections Message from the General Co-Chairs Algorithm-data driven optimization of adaptive communication networks Planning in compute-aggregate problems as optimization problems on graphs General ternary bit strings on commodity longest-prefix-match infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1