Optical and thermal performance of a novel solar particle receiver

Xiangyu Xie, G. Xiao, M. Ni, Jian-hua Yan, H. Dong, K. Cen
{"title":"Optical and thermal performance of a novel solar particle receiver","authors":"Xiangyu Xie, G. Xiao, M. Ni, Jian-hua Yan, H. Dong, K. Cen","doi":"10.1063/1.5117577","DOIUrl":null,"url":null,"abstract":"A novel particle receiver is proposed and tried to improve the flexibility of control, the reliability and the efficiency of the existing solar particle receivers. The novel particle receiver is mainly composed of an inclined plate where the particles flow due to gravity and absorb concentrating radiation directly meanwhile, and a pneumatic control system where the particle flow rate can be regulated by fluidization gas. The performance has been experimentally and numerically investigated preliminarily. The experimental results of cold tests show that the solid-gas ratio can reach up to ∼25 for different cross sections, indicating that the heat loss caused by fluidization gas is acceptable, usually less than 2%, and particle flow rate could be adjusted flexibly. The experimental results of hot test show that the outlet temperature of particle flow ranges from ∼709 K to ∼938 K and the average outlet temperature of particle flow is ∼807 K under the incident radiation power of ∼8 kw and the particle flow rat...","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"45 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A novel particle receiver is proposed and tried to improve the flexibility of control, the reliability and the efficiency of the existing solar particle receivers. The novel particle receiver is mainly composed of an inclined plate where the particles flow due to gravity and absorb concentrating radiation directly meanwhile, and a pneumatic control system where the particle flow rate can be regulated by fluidization gas. The performance has been experimentally and numerically investigated preliminarily. The experimental results of cold tests show that the solid-gas ratio can reach up to ∼25 for different cross sections, indicating that the heat loss caused by fluidization gas is acceptable, usually less than 2%, and particle flow rate could be adjusted flexibly. The experimental results of hot test show that the outlet temperature of particle flow ranges from ∼709 K to ∼938 K and the average outlet temperature of particle flow is ∼807 K under the incident radiation power of ∼8 kw and the particle flow rat...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型太阳粒子接收器的光学和热性能
为了提高现有太阳能粒子接收器的控制灵活性、可靠性和效率,提出了一种新型的粒子接收器。该新型颗粒接收器主要由倾斜板和气流控制系统组成,倾斜板使颗粒在重力作用下流动,同时直接吸收集中辐射。对其性能进行了初步的实验和数值研究。冷试验结果表明,不同截面固气比可达~ 25,表明流化气体引起的热损失是可接受的,通常小于2%,颗粒流速可灵活调节。热测试实验结果表明,在入射辐射功率为~ 8 kw时,粒子流出口温度在~ 709 K ~ ~ 938 K之间,粒子流出口平均温度为~ 807 K,粒子流速率为~ 807 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-accuracy real-time monitoring of solar radiation attenuation in commercial solar towers Optical and thermal performance of a novel solar particle receiver The fluidized bed air heat exchanger in a hybrid Brayton-cycle solar power plant “MOSAIC”, A new CSP plant concept for the highest concentration ratios at the lowest cost Value contribution of solar plants to the Chilean electric system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1