{"title":"A General Dense Image Matching Framework Combining Direct and Feature-Based Costs","authors":"Jim Braux-Zin, R. Dupont, A. Bartoli","doi":"10.1109/ICCV.2013.30","DOIUrl":null,"url":null,"abstract":"Dense motion field estimation (typically optical flow, stereo disparity and surface registration) is a key computer vision problem. Many solutions have been proposed to compute small or large displacements, narrow or wide baseline stereo disparity, but a unified methodology is still lacking. We here introduce a general framework that robustly combines direct and feature-based matching. The feature-based cost is built around a novel robust distance function that handles key points and ``weak'' features such as segments. It allows us to use putative feature matches which may contain mismatches to guide dense motion estimation out of local minima. Our framework uses a robust direct data term (AD-Census). It is implemented with a powerful second order Total Generalized Variation regularization with external and self-occlusion reasoning. Our framework achieves state of the art performance in several cases (standard optical flow benchmarks, wide-baseline stereo and non-rigid surface registration). Our framework has a modular design that customizes to specific application needs.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"61 1","pages":"185-192"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56
Abstract
Dense motion field estimation (typically optical flow, stereo disparity and surface registration) is a key computer vision problem. Many solutions have been proposed to compute small or large displacements, narrow or wide baseline stereo disparity, but a unified methodology is still lacking. We here introduce a general framework that robustly combines direct and feature-based matching. The feature-based cost is built around a novel robust distance function that handles key points and ``weak'' features such as segments. It allows us to use putative feature matches which may contain mismatches to guide dense motion estimation out of local minima. Our framework uses a robust direct data term (AD-Census). It is implemented with a powerful second order Total Generalized Variation regularization with external and self-occlusion reasoning. Our framework achieves state of the art performance in several cases (standard optical flow benchmarks, wide-baseline stereo and non-rigid surface registration). Our framework has a modular design that customizes to specific application needs.