Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments

Huaiyang Huang, Yuxiang Sun, Ming Liu
{"title":"Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments","authors":"Huaiyang Huang, Yuxiang Sun, Ming Liu","doi":"10.1109/ITSC.2019.8916977","DOIUrl":null,"url":null,"abstract":"Visual Simultaneous Localization and Mapping (SLAM) systems assume a static world. They usually fail under adverse weather conditions. In this paper, we propose a robust monocular SLAM system that is able to work under rainy conditions in urban environments reliably. To recover camera ego-motion from images with rain streaks, we apply a superpixel-based image content alignment method for the static background modelling. With coarse outputs estimated through averaging temporal matches, image details are recovered by a Convolutional Neural Network (CNN). Based on the statistic distribution of intensity variance between original and reconstructed image pairs, a robust and noise-sensitive weight function is explored for rejecting outliers when estimating camera poses. Quantitative evaluation results on the CARLA and synthetic KITTI datasets demonstrate the reliability of the proposed system and its superiority over the state-of-the-art approaches.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"27 12","pages":"1290-1297"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8916977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Visual Simultaneous Localization and Mapping (SLAM) systems assume a static world. They usually fail under adverse weather conditions. In this paper, we propose a robust monocular SLAM system that is able to work under rainy conditions in urban environments reliably. To recover camera ego-motion from images with rain streaks, we apply a superpixel-based image content alignment method for the static background modelling. With coarse outputs estimated through averaging temporal matches, image details are recovered by a Convolutional Neural Network (CNN). Based on the statistic distribution of intensity variance between original and reconstructed image pairs, a robust and noise-sensitive weight function is explored for rejecting outliers when estimating camera poses. Quantitative evaluation results on the CARLA and synthetic KITTI datasets demonstrate the reliability of the proposed system and its superiority over the state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市多雨环境下可靠的单眼自运动估计系统
视觉同步定位与地图(SLAM)系统假设一个静态世界。它们通常在恶劣的天气条件下失效。在本文中,我们提出了一个鲁棒的单目SLAM系统,能够在城市环境的多雨条件下可靠地工作。为了从带有雨纹的图像中恢复相机的自运动,我们应用了一种基于超像素的图像内容对齐方法进行静态背景建模。通过平均时间匹配估计粗输出,通过卷积神经网络(CNN)恢复图像细节。基于原始图像和重建图像对强度方差的统计分布,探索了一种鲁棒且对噪声敏感的权重函数,用于在估计相机姿态时剔除异常值。在CARLA和合成KITTI数据集上的定量评估结果证明了所提出系统的可靠性及其优于最先进方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance Vehicle Occupancy Detection for HOV/HOT Lanes Enforcement Road Roughness Crowd-Sensing with Smartphone Apps LACI: Low-effort Automatic Calibration of Infrastructure Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1