Software effort estimation using machine learning techniques

Monika, O. Sangwan
{"title":"Software effort estimation using machine learning techniques","authors":"Monika, O. Sangwan","doi":"10.1109/CONFLUENCE.2017.7943130","DOIUrl":null,"url":null,"abstract":"Effort Estimation is a very important activity for planning and scheduling of software project life cycle in order to deliver the product on time and within budget. Machine learning techniques are proving very useful to accurately predict software effort values. This paper presents a review of various machine-learning techniques using in estimation of software project effort namely Artificial Neural Network, Fuzzy logic, Analogy estimation etc. Machine learning techniques consistently predicting accurate results because of its learning natures form previously completed projects. This paper summarizes that each technique has its own features and behave differently according to environment so no technique can be preferred over each other.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"427 1","pages":"92-98"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Effort Estimation is a very important activity for planning and scheduling of software project life cycle in order to deliver the product on time and within budget. Machine learning techniques are proving very useful to accurately predict software effort values. This paper presents a review of various machine-learning techniques using in estimation of software project effort namely Artificial Neural Network, Fuzzy logic, Analogy estimation etc. Machine learning techniques consistently predicting accurate results because of its learning natures form previously completed projects. This paper summarizes that each technique has its own features and behave differently according to environment so no technique can be preferred over each other.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习技术的软件工作量估算
为了在预算范围内按时交付产品,工作量评估是对软件项目生命周期进行计划和调度的一项非常重要的活动。事实证明,机器学习技术对于准确预测软件工作值非常有用。本文介绍了各种机器学习技术在软件项目工作量估计中的应用,即人工神经网络、模糊逻辑、类比估计等。机器学习技术始终预测准确的结果,因为它从以前完成的项目中学习的性质。本文总结了每种技术都有自己的特点,并根据环境的不同表现出不同的行为,因此没有一种技术可以凌驾于其他技术之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1