Event Retrieval in Large Video Collections with Circulant Temporal Encoding

Jérôme Revaud, Matthijs Douze, C. Schmid, H. Jégou
{"title":"Event Retrieval in Large Video Collections with Circulant Temporal Encoding","authors":"Jérôme Revaud, Matthijs Douze, C. Schmid, H. Jégou","doi":"10.1109/CVPR.2013.318","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for large-scale event retrieval. Given a video clip of a specific event, eg, the wedding of Prince William and Kate Middleton, the goal is to retrieve other videos representing the same event from a dataset of over 100k videos. Our approach encodes the frame descriptors of a video to jointly represent their appearance and temporal order. It exploits the properties of circulant matrices to compare the videos in the frequency domain. This offers a significant gain in complexity and accurately localizes the matching parts of videos. Furthermore, we extend product quantization to complex vectors in order to compress our descriptors, and to compare them in the compressed domain. Our method outperforms the state of the art both in search quality and query time on two large-scale video benchmarks for copy detection, Trecvid and CCWeb. Finally, we introduce a challenging dataset for event retrieval, EVVE, and report the performance on this dataset.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"15 12","pages":"2459-2466"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

Abstract

This paper presents an approach for large-scale event retrieval. Given a video clip of a specific event, eg, the wedding of Prince William and Kate Middleton, the goal is to retrieve other videos representing the same event from a dataset of over 100k videos. Our approach encodes the frame descriptors of a video to jointly represent their appearance and temporal order. It exploits the properties of circulant matrices to compare the videos in the frequency domain. This offers a significant gain in complexity and accurately localizes the matching parts of videos. Furthermore, we extend product quantization to complex vectors in order to compress our descriptors, and to compare them in the compressed domain. Our method outperforms the state of the art both in search quality and query time on two large-scale video benchmarks for copy detection, Trecvid and CCWeb. Finally, we introduce a challenging dataset for event retrieval, EVVE, and report the performance on this dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于循环时间编码的大型视频集合事件检索
提出了一种大规模事件检索方法。给定一个特定事件的视频片段,例如,威廉王子和凯特米德尔顿的婚礼,目标是从超过10万个视频的数据集中检索代表相同事件的其他视频。我们的方法对视频的帧描述符进行编码,以共同表示它们的外观和时间顺序。它利用循环矩阵的性质在频域上对视频进行比较。这大大提高了复杂性,并准确地定位了视频的匹配部分。此外,我们将积量化扩展到复向量,以压缩我们的描述符,并在压缩域中比较它们。我们的方法在复制检测的两个大型视频基准(Trecvid和CCWeb)上的搜索质量和查询时间都优于目前的技术水平。最后,我们介绍了一个具有挑战性的事件检索数据集EVVE,并报告了该数据集的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segment-Tree Based Cost Aggregation for Stereo Matching Event Retrieval in Large Video Collections with Circulant Temporal Encoding Articulated and Restricted Motion Subspaces and Their Signatures Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation Learning Video Saliency from Human Gaze Using Candidate Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1