Performance-Efficiency Trade-Offs in Adapting Language Models to Text Classification Tasks

Q3 Environmental Science AACL Bioflux Pub Date : 2022-10-21 DOI:10.48550/arXiv.2210.12022
Laura Aina, Nikos Voskarides
{"title":"Performance-Efficiency Trade-Offs in Adapting Language Models to Text Classification Tasks","authors":"Laura Aina, Nikos Voskarides","doi":"10.48550/arXiv.2210.12022","DOIUrl":null,"url":null,"abstract":"Pre-trained language models (LMs) obtain state-of-the-art performance when adapted to text classification tasks. However, when using such models in real world applications, efficiency considerations are paramount. In this paper, we study how different training procedures that adapt LMs to text classification perform, as we vary model and train set size. More specifically, we compare standard fine-tuning, prompting, and knowledge distillation (KD) when the teacher was trained with either fine-tuning or prompting. Our findings suggest that even though fine-tuning and prompting work well to train large LMs on large train sets, there are more efficient alternatives that can reduce compute or data cost. Interestingly, we find that prompting combined with KD can reduce compute and data cost at the same time.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"C-20 12","pages":"244-253"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.12022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Pre-trained language models (LMs) obtain state-of-the-art performance when adapted to text classification tasks. However, when using such models in real world applications, efficiency considerations are paramount. In this paper, we study how different training procedures that adapt LMs to text classification perform, as we vary model and train set size. More specifically, we compare standard fine-tuning, prompting, and knowledge distillation (KD) when the teacher was trained with either fine-tuning or prompting. Our findings suggest that even though fine-tuning and prompting work well to train large LMs on large train sets, there are more efficient alternatives that can reduce compute or data cost. Interestingly, we find that prompting combined with KD can reduce compute and data cost at the same time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
适应文本分类任务的语言模型的性能-效率权衡
预训练语言模型(LMs)在适应文本分类任务时获得最先进的性能。然而,当在实际应用程序中使用此类模型时,效率考虑是至关重要的。在本文中,我们研究了当我们改变模型和训练集大小时,使LMs适应文本分类的不同训练过程是如何执行的。更具体地说,当教师接受微调或提示培训时,我们比较了标准微调、提示和知识蒸馏(KD)。我们的研究结果表明,尽管微调和提示可以很好地训练大型训练集上的大型LMs,但还有更有效的替代方法可以减少计算或数据成本。有趣的是,我们发现提示与KD相结合可以同时减少计算和数据成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
HaRiM^+: Evaluating Summary Quality with Hallucination Risk PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems Local Structure Matters Most in Most Languages Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1