HaRiM^+: Evaluating Summary Quality with Hallucination Risk

Q3 Environmental Science AACL Bioflux Pub Date : 2022-11-22 DOI:10.48550/arXiv.2211.12118
Seonil Son, Junsoo Park, J. Hwang, Junghwa Lee, Hyungjong Noh, Yeonsoo Lee
{"title":"HaRiM^+: Evaluating Summary Quality with Hallucination Risk","authors":"Seonil Son, Junsoo Park, J. Hwang, Junghwa Lee, Hyungjong Noh, Yeonsoo Lee","doi":"10.48550/arXiv.2211.12118","DOIUrl":null,"url":null,"abstract":"One of the challenges of developing a summarization model arises from the difficulty in measuring the factual inconsistency of the generated text. In this study, we reinterpret the decoder overconfidence-regularizing objective suggested in (Miao et al., 2021) as a hallucination risk measurement to better estimate the quality of generated summaries. We propose a reference-free metric, HaRiM+, which only requires an off-the-shelf summarization model to compute the hallucination risk based on token likelihoods. Deploying it requires no additional training of models or ad-hoc modules, which usually need alignment to human judgments. For summary-quality estimation, HaRiM+ records state-of-the-art correlation to human judgment on three summary-quality annotation sets: FRANK, QAGS, and SummEval. We hope that our work, which merits the use of summarization models, facilitates the progress of both automated evaluation and generation of summary.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"52 1","pages":"895-924"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.12118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

One of the challenges of developing a summarization model arises from the difficulty in measuring the factual inconsistency of the generated text. In this study, we reinterpret the decoder overconfidence-regularizing objective suggested in (Miao et al., 2021) as a hallucination risk measurement to better estimate the quality of generated summaries. We propose a reference-free metric, HaRiM+, which only requires an off-the-shelf summarization model to compute the hallucination risk based on token likelihoods. Deploying it requires no additional training of models or ad-hoc modules, which usually need alignment to human judgments. For summary-quality estimation, HaRiM+ records state-of-the-art correlation to human judgment on three summary-quality annotation sets: FRANK, QAGS, and SummEval. We hope that our work, which merits the use of summarization models, facilitates the progress of both automated evaluation and generation of summary.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HaRiM^+:用幻觉风险评估总结质量
开发摘要模型的挑战之一是难以衡量生成文本的事实不一致性。在本研究中,我们将(Miao et al., 2021)中提出的解码器过度置信度正则化目标重新解释为幻觉风险测量,以更好地估计生成摘要的质量。我们提出了一个无参考的度量,HaRiM+,它只需要一个现成的总结模型来计算基于令牌可能性的幻觉风险。部署它不需要对模型或特别模块进行额外的训练,这通常需要与人类的判断保持一致。对于摘要质量估计,HaRiM+在三个摘要质量注释集FRANK、QAGS和SummEval上记录了最先进的与人类判断的相关性。我们希望我们的工作,值得使用的摘要模型,促进自动化评估和生成摘要的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
HaRiM^+: Evaluating Summary Quality with Hallucination Risk PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems Local Structure Matters Most in Most Languages Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1