Load Frequency Control of Two Area and Multi Source Power System Using Grey Wolf Optimization Algorithm

A. Doğan
{"title":"Load Frequency Control of Two Area and Multi Source Power System Using Grey Wolf Optimization Algorithm","authors":"A. Doğan","doi":"10.23919/ELECO47770.2019.8990643","DOIUrl":null,"url":null,"abstract":"In this study, load frequency of two area interconnected power systems are controlled based on Proportional Integral Derivative (PID) controller structures and gain parameters of controllers are decided using Grey Wolf Optimization (GWO) algorithm. Dynamic response of the proposed structure is investigated considering integral of time multiplied absolute error (ITEA) as cost function in a two area and multi source power system. Capability and efficiency of GWO algorithm is illustrated in comparison to Particle Swarm Optimization (PSO) and Artificial Bee colony (ABC). It is observed that GWO provides minimum value of cost function and better dynamic response among the considered algorithms.","PeriodicalId":6611,"journal":{"name":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"35 9","pages":"81-84"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELECO47770.2019.8990643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, load frequency of two area interconnected power systems are controlled based on Proportional Integral Derivative (PID) controller structures and gain parameters of controllers are decided using Grey Wolf Optimization (GWO) algorithm. Dynamic response of the proposed structure is investigated considering integral of time multiplied absolute error (ITEA) as cost function in a two area and multi source power system. Capability and efficiency of GWO algorithm is illustrated in comparison to Particle Swarm Optimization (PSO) and Artificial Bee colony (ABC). It is observed that GWO provides minimum value of cost function and better dynamic response among the considered algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灰狼优化算法的两区多源电力系统负荷频率控制
本研究采用比例积分导数(PID)控制器结构对两区域互联电力系统的负荷频率进行控制,并采用灰狼优化算法确定控制器的增益参数。在双区多源电力系统中,以时间乘绝对误差积分(ITEA)为代价函数,研究了结构的动态响应。通过与粒子群算法(PSO)和人工蜂群算法(ABC)的比较,说明了GWO算法的性能和效率。结果表明,在所考虑的算法中,GWO算法具有最小的代价函数值和更好的动态响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Load Frequency Control of Two Area and Multi Source Power System Using Grey Wolf Optimization Algorithm Performance Analysis of Fault Current Limiting Methods on IEEE 9-Bus System Comparison of Magnetic Particle Incorporated PDMS Membrane Actuators Gene Selection using Intelligent Dynamic Genetic Algorithm and Random Forest RFID Based Indoors Test Setup for Visually Impaired
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1