Asad Mehmood, H. Ghafar, Samiya Yaqoob, Umar Farooq Gohar, B. Ahmad
{"title":"Mesoporous Silica Nanoparticles: A Review","authors":"Asad Mehmood, H. Ghafar, Samiya Yaqoob, Umar Farooq Gohar, B. Ahmad","doi":"10.4172/2329-6631.1000174","DOIUrl":null,"url":null,"abstract":"One of the greatest challenges in the field of medicine is the effective and efficient drug delivery to the defected cells or tumor cells with minimal toxic side effects. Due to lacking properties like specification and solubility of drug molecule, patient requires high doses of the drug to attain the desired therapeutic effect for the disease treatment. To overcome this problem various drug carriers are available in the pharmaceutical field, which help in delivering the therapeutic drug/ gene to the target site. For this purpose, mesoporous silica nanoparticles (MSNs) are found to be biocompatible, chemically and thermally stable nanoparticles. Their unique structural properties facilitate the loading of drug/gene and subsequent controlled delivery of drug to the target site. During recent years research on MSNs has been extensively increase. Since 2001, when MCM-41 was first proposed and later on SBA-15 and MCM-48 as drug carrier for controlled delivery system. Morphological characteristics like pore size, pore volume, particle size, surface area, pH and loading capacity of drug are widely effects the MSNs, when altered. Meanwhile, functionalization of MSNs using organic and inorganic group elaborates the delivery of drug to targeted site. This review article also deals with the recent research on synthesis methods of MSNs and their applications in the field of medicine, imaging, diagnosis, cellular uptake, target drug delivery, cell tracing and bio-sensing.","PeriodicalId":15589,"journal":{"name":"Journal of Developing Drugs","volume":"49 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developing Drugs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-6631.1000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94
Abstract
One of the greatest challenges in the field of medicine is the effective and efficient drug delivery to the defected cells or tumor cells with minimal toxic side effects. Due to lacking properties like specification and solubility of drug molecule, patient requires high doses of the drug to attain the desired therapeutic effect for the disease treatment. To overcome this problem various drug carriers are available in the pharmaceutical field, which help in delivering the therapeutic drug/ gene to the target site. For this purpose, mesoporous silica nanoparticles (MSNs) are found to be biocompatible, chemically and thermally stable nanoparticles. Their unique structural properties facilitate the loading of drug/gene and subsequent controlled delivery of drug to the target site. During recent years research on MSNs has been extensively increase. Since 2001, when MCM-41 was first proposed and later on SBA-15 and MCM-48 as drug carrier for controlled delivery system. Morphological characteristics like pore size, pore volume, particle size, surface area, pH and loading capacity of drug are widely effects the MSNs, when altered. Meanwhile, functionalization of MSNs using organic and inorganic group elaborates the delivery of drug to targeted site. This review article also deals with the recent research on synthesis methods of MSNs and their applications in the field of medicine, imaging, diagnosis, cellular uptake, target drug delivery, cell tracing and bio-sensing.