Skin lesion classification from dermoscopic images using deep learning techniques

Adria Romero Lopez, Xavier Giró-i-Nieto, Jack Burdick, Oge Marques
{"title":"Skin lesion classification from dermoscopic images using deep learning techniques","authors":"Adria Romero Lopez, Xavier Giró-i-Nieto, Jack Burdick, Oge Marques","doi":"10.2316/P.2017.852-053","DOIUrl":null,"url":null,"abstract":"The recent emergence of deep learning methods for medical image analysis has enabled the development of intelligent medical imaging-based diagnosis systems that can assist the human expert in making better decisions about a patients health. In this paper we focus on the problem of skin lesion classification, particularly early melanoma detection, and present a deep-learning based approach to solve the problem of classifying a dermoscopic image containing a skin lesion as malignant or benign. The proposed solution is built around the VGGNet convolutional neural network architecture and uses the transfer learning paradigm. Experimental results are encouraging: on the ISIC Archive dataset, the proposed method achieves a sensitivity value of 78.66%, which is significantly higher than the current state of the art on that dataset.","PeriodicalId":6635,"journal":{"name":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","volume":"26 1","pages":"49-54"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/P.2017.852-053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 278

Abstract

The recent emergence of deep learning methods for medical image analysis has enabled the development of intelligent medical imaging-based diagnosis systems that can assist the human expert in making better decisions about a patients health. In this paper we focus on the problem of skin lesion classification, particularly early melanoma detection, and present a deep-learning based approach to solve the problem of classifying a dermoscopic image containing a skin lesion as malignant or benign. The proposed solution is built around the VGGNet convolutional neural network architecture and uses the transfer learning paradigm. Experimental results are encouraging: on the ISIC Archive dataset, the proposed method achieves a sensitivity value of 78.66%, which is significantly higher than the current state of the art on that dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习技术从皮肤镜图像中分类皮肤病变
最近出现的用于医学图像分析的深度学习方法使基于智能医学成像的诊断系统得以发展,这些系统可以帮助人类专家对患者的健康做出更好的决策。在本文中,我们专注于皮肤病变分类问题,特别是早期黑色素瘤检测,并提出了一种基于深度学习的方法来解决将含有皮肤病变的皮肤镜图像分类为恶性或良性的问题。提出的解决方案是围绕VGGNet卷积神经网络架构构建的,并使用迁移学习范式。实验结果令人鼓舞:在ISIC Archive数据集上,提出的方法达到了78.66%的灵敏度值,明显高于该数据集上的当前技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A physical simulation to investigate the effect of anorectal angle on continence Effect of anatomical landmark placement variation on the angular parameters of the lower extremities Balancing strategy differences in bilateral knee osteoarthritis patients Controlled permeation of lidocaine hydrochloride using a smart drug delivery system Comparison of single ended and differential signalling for wired biomedical implants using SPI communication with Reed Solomon Error Correction codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1