{"title":"Designing an ideal 3D-bioprint conduit for axonal repair and regeneration: a neurosurgical perspective","authors":"Caleb E. Stewart, C. Kan, D. Nguyen, O. Sulaiman","doi":"10.14748/bmr.v30.6382","DOIUrl":null,"url":null,"abstract":"Peripheral nerve injuries occur through three mechanisms, specifically, crush, compression or transection. Disruption of communication between the peripheral and central nervous system follows and leads to motor and sensory deficits. Peripheral nerves in humans have a limited capacity to self-regenerate following injury, which makes nerve transfer the current gold-standard for treatment. Functional nerve regeneration is contingent on several factors ranging from span of injury and the age of the patient. Bioprinted nerve guidance conduits are an emerging candidate for treating peripheral nerve injuries. To optimize the performance of nerve guidance conduits, a firm understanding of neurobiology and the pathophysiology following injury is necessary. This article provides an overview of nerve regeneration and the desirable features when designing a nerve conduit from a neurosurgical perspective.","PeriodicalId":8906,"journal":{"name":"Biomedical Reviews","volume":"110 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14748/bmr.v30.6382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral nerve injuries occur through three mechanisms, specifically, crush, compression or transection. Disruption of communication between the peripheral and central nervous system follows and leads to motor and sensory deficits. Peripheral nerves in humans have a limited capacity to self-regenerate following injury, which makes nerve transfer the current gold-standard for treatment. Functional nerve regeneration is contingent on several factors ranging from span of injury and the age of the patient. Bioprinted nerve guidance conduits are an emerging candidate for treating peripheral nerve injuries. To optimize the performance of nerve guidance conduits, a firm understanding of neurobiology and the pathophysiology following injury is necessary. This article provides an overview of nerve regeneration and the desirable features when designing a nerve conduit from a neurosurgical perspective.