Parameter identification of bacterial growth bioprocesses using particle swarm optimization

D. Sendrescu, M. Roman
{"title":"Parameter identification of bacterial growth bioprocesses using particle swarm optimization","authors":"D. Sendrescu, M. Roman","doi":"10.1109/ASCC.2013.6606279","DOIUrl":null,"url":null,"abstract":"This paper deals with the off-line parameters identification for a class of bacterial growth bioprocesses using particle swarm optimization (PSO) techniques. Particle swarm optimization is a relatively new heuristic method that has produced promising results for solving complex optimization problems. In this paper one uses some variants of the PSO algorithm for parameter estimation of a complex biotechnological system. The identification problem is formulated as a multi-modal numerical optimization problem with high dimension. The performances of the method are analyzed by numerical simulations.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"67 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper deals with the off-line parameters identification for a class of bacterial growth bioprocesses using particle swarm optimization (PSO) techniques. Particle swarm optimization is a relatively new heuristic method that has produced promising results for solving complex optimization problems. In this paper one uses some variants of the PSO algorithm for parameter estimation of a complex biotechnological system. The identification problem is formulated as a multi-modal numerical optimization problem with high dimension. The performances of the method are analyzed by numerical simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的细菌生长生物过程参数辨识
本文研究了用粒子群优化(PSO)技术对一类细菌生长生物过程进行离线参数辨识。粒子群算法是一种较新的启发式算法,在解决复杂优化问题方面取得了很好的效果。本文将粒子群算法的一些变体用于复杂生物技术系统的参数估计。将辨识问题表述为一个高维的多模态数值优化问题。通过数值仿真分析了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable double resonant controller for fast image scanning of atomic force microscope FA system integration using robotic intelligent componets Parameter identification of bacterial growth bioprocesses using particle swarm optimization Velocity planning to optimize traction losses in a City-Bus Equipped with Permanent Magnet Three-Phase Synchronous Motors Stabilization of uncertain discrete time-delayed systems via delta operator approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1