Enhanced Photocatalytic Degradation of Methylene Blue Using /MWCNT Composite Synthesized by Hydrothermal Method

S. Singhal, Rimi Sharma, Charanjit Singh, S. Bansal
{"title":"Enhanced Photocatalytic Degradation of Methylene Blue Using /MWCNT Composite Synthesized by Hydrothermal Method","authors":"S. Singhal, Rimi Sharma, Charanjit Singh, S. Bansal","doi":"10.1155/2013/356025","DOIUrl":null,"url":null,"abstract":"Multiwalled carbon nanotubes (MWCNTs) were synthesized using arc discharge method at a magnetic field of 430 G and purified using HNO3/H2O2. Transmission electron micrographs revealed that MWCNTs had inner and outer diameter of ~2 nm and ~4 nm, respectively. Raman spectroscopy confirmed formation of MWCNTs showing G-band at 1577 cm−1. ZnFe2O4 and ZnFe2O4/MWCNT were produced using one step hydrothermal method. Powder X-ray diffraction (XRD) confirmed the formation of cubic spinel ZnFe2O4 as well as incorporation of MWCNT into ZnFe2O4. Visible light photocatalytic degradation of methylene blue (MB) was studied using pure ZnFe2O4 and ZnFe2O4/MWCNT. The results showed that ZnFe2O4/MWCNT composite had higher photocatalytic activity as compared to pure ZnFe2O4. After irradiation for 5 hours in the visible light, MB was almost 84% degraded in the presence of ZnFe2O4 photocatalyst, while 99% degradation was observed in case of ZnFe2O4/MWCNT composite. This enhancement in the photocatalytic activity of composite may be attributed to the inhibition of recombination of photogenerated charge carriers.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"22 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/356025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Multiwalled carbon nanotubes (MWCNTs) were synthesized using arc discharge method at a magnetic field of 430 G and purified using HNO3/H2O2. Transmission electron micrographs revealed that MWCNTs had inner and outer diameter of ~2 nm and ~4 nm, respectively. Raman spectroscopy confirmed formation of MWCNTs showing G-band at 1577 cm−1. ZnFe2O4 and ZnFe2O4/MWCNT were produced using one step hydrothermal method. Powder X-ray diffraction (XRD) confirmed the formation of cubic spinel ZnFe2O4 as well as incorporation of MWCNT into ZnFe2O4. Visible light photocatalytic degradation of methylene blue (MB) was studied using pure ZnFe2O4 and ZnFe2O4/MWCNT. The results showed that ZnFe2O4/MWCNT composite had higher photocatalytic activity as compared to pure ZnFe2O4. After irradiation for 5 hours in the visible light, MB was almost 84% degraded in the presence of ZnFe2O4 photocatalyst, while 99% degradation was observed in case of ZnFe2O4/MWCNT composite. This enhancement in the photocatalytic activity of composite may be attributed to the inhibition of recombination of photogenerated charge carriers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水热法合成/MWCNT复合材料增强光催化降解亚甲基蓝
采用电弧放电法在430 G磁场下合成了多壁碳纳米管(MWCNTs),并用HNO3/H2O2提纯。透射电子显微镜显示,MWCNTs的内径为~2 nm,外径为~4 nm。拉曼光谱证实形成的MWCNTs在1577 cm−1处显示g波段。采用一步水热法制备了ZnFe2O4和ZnFe2O4/MWCNT。粉末x射线衍射(XRD)证实了立方尖晶石ZnFe2O4的形成以及MWCNT在ZnFe2O4中的掺入。采用纯ZnFe2O4和ZnFe2O4/MWCNT对亚甲基蓝(MB)进行了可见光催化降解研究。结果表明,与纯ZnFe2O4相比,ZnFe2O4/MWCNT复合材料具有更高的光催化活性。ZnFe2O4光催化剂在可见光下照射5小时后,MB的降解率接近84%,而ZnFe2O4/MWCNT复合材料的降解率为99%。复合材料光催化活性的增强可能是由于抑制了光生载流子的重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Mechanical Properties of Hybrid Aluminium 7075 Matrix Composite Material Reinforced with SiC and TiC Produced by Powder Metallurgy Method Process to Improve the Adherences of Copper to a PTFE Plate Preparation of Paper Mulberry Fibers and Possibility of Cotton/Paper Mulberry Yarns Production Three-Dimensional Unsteady State Temperature Distribution of Thin Rectangular Plate with Moving Point Heat Source Experimental Evaluation and Characterization of Electron Beam Welding of 2219 AL-Alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1