Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation

Aymé Arango, Jorge Pérez, Bárbara Poblete
{"title":"Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation","authors":"Aymé Arango, Jorge Pérez, Bárbara Poblete","doi":"10.1145/3331184.3331262","DOIUrl":null,"url":null,"abstract":"Hate speech is an important problem that is seriously affecting the dynamics and usefulness of online social communities. Large scale social platforms are currently investing important resources into automatically detecting and classifying hateful content, without much success. On the other hand, the results reported by state-of-the-art systems indicate that supervised approaches achieve almost perfect performance but only within specific datasets. In this work, we analyze this apparent contradiction between existing literature and actual applications. We study closely the experimental methodology used in prior work and their generalizability to other datasets. Our findings evidence methodological issues, as well as an important dataset bias. As a consequence, performance claims of the current state-of-the-art have become significantly overestimated. The problems that we have found are mostly related to data overfitting and sampling issues. We discuss the implications for current research and re-conduct experiments to give a more accurate picture of the current state-of-the art methods.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"78 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

Abstract

Hate speech is an important problem that is seriously affecting the dynamics and usefulness of online social communities. Large scale social platforms are currently investing important resources into automatically detecting and classifying hateful content, without much success. On the other hand, the results reported by state-of-the-art systems indicate that supervised approaches achieve almost perfect performance but only within specific datasets. In this work, we analyze this apparent contradiction between existing literature and actual applications. We study closely the experimental methodology used in prior work and their generalizability to other datasets. Our findings evidence methodological issues, as well as an important dataset bias. As a consequence, performance claims of the current state-of-the-art have become significantly overestimated. The problems that we have found are mostly related to data overfitting and sampling issues. We discuss the implications for current research and re-conduct experiments to give a more accurate picture of the current state-of-the art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仇恨语音检测并不像你想象的那么容易:仔细看看模型验证
仇恨言论是一个严重影响在线社会社区动态和有用性的重要问题。大型社交平台目前在自动检测和分类仇恨内容方面投入了重要资源,但收效甚微。另一方面,最先进的系统报告的结果表明,监督方法实现了几乎完美的性能,但仅在特定的数据集中。在这项工作中,我们分析了现有文献与实际应用之间的这种明显矛盾。我们仔细研究了先前工作中使用的实验方法及其在其他数据集上的可泛化性。我们的发现证明了方法上的问题,以及一个重要的数据集偏差。因此,目前最先进技术的性能要求被大大高估了。我们发现的问题主要与数据过拟合和抽样问题有关。我们讨论了对当前研究和重新进行实验的影响,以更准确地了解当前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Task Completion Flows from Web APIs Session details: Session 6A: Social Media Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN Adversarial Training for Review-Based Recommendations Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1