GPU-accelerated parallel optimization for sparse regularization

Xingran. Wang, Tianyi Liu, Minh Trinh-Hoang, M. Pesavento
{"title":"GPU-accelerated parallel optimization for sparse regularization","authors":"Xingran. Wang, Tianyi Liu, Minh Trinh-Hoang, M. Pesavento","doi":"10.1109/SAM48682.2020.9104328","DOIUrl":null,"url":null,"abstract":"We prove the concept that the block successive convex approximation algorithm can be configured in a flexible manner to adjust for implementations on modern parallel hardware architecture. A shuffle order update scheme and an all-close termination criterion are considered for efficient performance and convergence comparisons. Four different implementations are studied and compared. Simulation results on hardware show the condition of using shuffle order and selection of block numbers and implementations.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"28 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We prove the concept that the block successive convex approximation algorithm can be configured in a flexible manner to adjust for implementations on modern parallel hardware architecture. A shuffle order update scheme and an all-close termination criterion are considered for efficient performance and convergence comparisons. Four different implementations are studied and compared. Simulation results on hardware show the condition of using shuffle order and selection of block numbers and implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏正则化的gpu加速并行优化
我们证明了块连续凸逼近算法可以灵活配置,以适应现代并行硬件架构的实现。为了提高算法的性能和收敛性,考虑了shuffle顺序更新方案和全闭终止准则。研究并比较了四种不同的实现。硬件上的仿真结果显示了洗牌顺序的使用条件和块号的选择以及实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1