A micro resonant acceleration sensor comprising silicon support with temperature isolator and quartz doubled ended tuning fork

Cun Li, Yulong Zhao, Rongjun Cheng
{"title":"A micro resonant acceleration sensor comprising silicon support with temperature isolator and quartz doubled ended tuning fork","authors":"Cun Li, Yulong Zhao, Rongjun Cheng","doi":"10.1109/NEMS.2014.6908823","DOIUrl":null,"url":null,"abstract":"We present a micro resonant acceleration sensor based on the frequency shift of quartz double ended tuning fork (DETF). The two stiff ends of DETF are mounted on proof mass and temperature isolator structure of silicon support, respectively. Electrodes are coated on the four surfaces of the resonant beam to excite anti-phase vibration model to balance inner stress and torque. Stress in DETF beam shifts when the proof mass is applied to acceleration, which changes resonance frequency of DETF. The temperature isolator structure is designed to reduce the impact of thermal stress due to the difference of thermal expansion coefficient between quartz and silicon. The silicon support and DETF are fabricated based on the bulk micromachining technology. Self-excited circuit is also designed to excite DETF. The proposed sensor is simply packaged for measurement. The sensor takes advantages of both quartz and silicon materials to achieve a micro resonant sensor with simple processing for digital acceleration measurements.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"1 1","pages":"346-349"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a micro resonant acceleration sensor based on the frequency shift of quartz double ended tuning fork (DETF). The two stiff ends of DETF are mounted on proof mass and temperature isolator structure of silicon support, respectively. Electrodes are coated on the four surfaces of the resonant beam to excite anti-phase vibration model to balance inner stress and torque. Stress in DETF beam shifts when the proof mass is applied to acceleration, which changes resonance frequency of DETF. The temperature isolator structure is designed to reduce the impact of thermal stress due to the difference of thermal expansion coefficient between quartz and silicon. The silicon support and DETF are fabricated based on the bulk micromachining technology. Self-excited circuit is also designed to excite DETF. The proposed sensor is simply packaged for measurement. The sensor takes advantages of both quartz and silicon materials to achieve a micro resonant sensor with simple processing for digital acceleration measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种微谐振加速度传感器,包括硅支架与温度隔离器和石英双端音叉
提出了一种基于石英双端音叉频移的微谐振加速度传感器。DETF的两个刚性端分别安装在硅支架的防质量和温度隔离结构上。在谐振梁的四个表面涂覆电极,激发反相位振动模型以平衡内部应力和扭矩。当证明质量作用于加速度时,DETF梁中的应力会发生位移,从而改变DETF的共振频率。为了减小石英与硅的热膨胀系数差异对热应力的影响,设计了隔温器结构。基于本体微加工技术制备了硅支架和DETF。还设计了自激电路来激发DETF。所提出的传感器被简单地封装用于测量。该传感器利用石英和硅材料的优势,实现了一个简单处理的微型谐振传感器,用于数字加速度测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large scale and high yield assembly of SWNTs by sacrificial electrode method Localized two-step galvanic replacement of a tip apex modification for field sensitive scanning probe microscopy Development of a novel bidirectional electrothermal actuator and its application to RF MEMS switch Nanorobotic end-effectors: Design, fabrication, and in situ characterization Quantum cloakings hide electronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1