A Y Denisova, L. M. Kavelenova, E. Korchikov, A. Pomogaybin, N. Prokhorova, D. A. Terentyeva, V. Fedoseev, N. Yankov
{"title":"Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies","authors":"A Y Denisova, L. M. Kavelenova, E. Korchikov, A. Pomogaybin, N. Prokhorova, D. A. Terentyeva, V. Fedoseev, N. Yankov","doi":"10.18287/1613-0073-2019-2391-233-242","DOIUrl":null,"url":null,"abstract":"The forest and shrub communities are important components of the environment and provide a wide spectrum of ecological services. In the Samara region the forest and shrub cover is dispersed on the territory what makes its monitoring difficult. The forest areas are limited by natural and anthropogenic reasons since Samara region is a forest-steppe territory with a high level of human activity. The shrub communities are mostly the secondary ecosystems incorporated in natural grassy communities, agricultural fields or enclosing to forests. These specific ecosystems can be recognized on remote sensing data including satellite images supported by preliminary ground surveys. In this article, we present the study of the forest and shrub communities recognition using remote sensing images and ground surveys in the Samara region. We describe a process of the test site selection for remote sensing data verification and discuss the results of applying the author’s classification technology for multispectral remote sensing composites to classify forest communities in the Samara region","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-233-242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The forest and shrub communities are important components of the environment and provide a wide spectrum of ecological services. In the Samara region the forest and shrub cover is dispersed on the territory what makes its monitoring difficult. The forest areas are limited by natural and anthropogenic reasons since Samara region is a forest-steppe territory with a high level of human activity. The shrub communities are mostly the secondary ecosystems incorporated in natural grassy communities, agricultural fields or enclosing to forests. These specific ecosystems can be recognized on remote sensing data including satellite images supported by preliminary ground surveys. In this article, we present the study of the forest and shrub communities recognition using remote sensing images and ground surveys in the Samara region. We describe a process of the test site selection for remote sensing data verification and discuss the results of applying the author’s classification technology for multispectral remote sensing composites to classify forest communities in the Samara region