Towards Neural Network Classification of Terahertz Measurements for Determining the Number of Coating Layers

I. Busboom, N. Rohde, S. Christmann, V. Feige, H. Haehnel, B. Tibken
{"title":"Towards Neural Network Classification of Terahertz Measurements for Determining the Number of Coating Layers","authors":"I. Busboom, N. Rohde, S. Christmann, V. Feige, H. Haehnel, B. Tibken","doi":"10.1109/IRMMW-THz46771.2020.9370440","DOIUrl":null,"url":null,"abstract":"To determine layer thicknesses with terahertz time-domain spectroscopy, the number of layers must usually be known. However, in some applications the number of layers varies along the surface, so that the number of layers at a specific measuring location can be unknown. Our approach is to use an artificial deep neural network for estimating the number of layers at a preliminary stage for common terahertz algorithms. This work describes the selection and evaluation of a feedforward neural network. This neural network allows a good estimation of the number of layers confirming the usefulness of the proposed approach.","PeriodicalId":6746,"journal":{"name":"2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"179 1","pages":"01-02"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz46771.2020.9370440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To determine layer thicknesses with terahertz time-domain spectroscopy, the number of layers must usually be known. However, in some applications the number of layers varies along the surface, so that the number of layers at a specific measuring location can be unknown. Our approach is to use an artificial deep neural network for estimating the number of layers at a preliminary stage for common terahertz algorithms. This work describes the selection and evaluation of a feedforward neural network. This neural network allows a good estimation of the number of layers confirming the usefulness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定涂层层数的太赫兹测量神经网络分类研究
为了用太赫兹时域光谱学确定层厚,通常必须知道层数。然而,在某些应用中,层数沿表面变化,因此在特定测量位置的层数可能是未知的。我们的方法是在普通太赫兹算法的初步阶段使用人工深度神经网络来估计层数。这项工作描述了前馈神经网络的选择和评估。该神经网络可以很好地估计层数,从而证实了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biomolecular Flexibility Characterization Using Solution Phase THz Protein Dynamical Transition 3D Aperture in THz Bull's Eye Structure for Sub-Wavelength Resolution Sensing Quality control of conductive ink distribution using terahertz spectroscopy Frequency Measurements of a Complex-Cavity Gyrotron for 400 GHz Second-Harmonic Oscillation Towards Neural Network Classification of Terahertz Measurements for Determining the Number of Coating Layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1