Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences

Yuehan Yin, Yahya Alqahtani, Jinjuan Feng, J. Chakraborty, M. P. McGuire
{"title":"Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences","authors":"Yuehan Yin, Yahya Alqahtani, Jinjuan Feng, J. Chakraborty, M. P. McGuire","doi":"10.1109/ICMLA52953.2021.00100","DOIUrl":null,"url":null,"abstract":"Eye tracking data can help design effective user interfaces by showing how users visually process information. In this study, three neural network models were developed and employed to classify three types of information display methods by using eye gaze data that was collected in visual information processing behavior studies. Eye gaze data was first converted into a sequence and was fed into neural networks to predict the information display type. The results of the study show a comparison between three methods for the creation of eye tracking sequences and how they perform using three neural network models including CNN-LSTM, CNN-GRU, and 3D CNN. The results were positive with all models having an accuracy of higher than 88 percent.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"82 1","pages":"601-605"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Eye tracking data can help design effective user interfaces by showing how users visually process information. In this study, three neural network models were developed and employed to classify three types of information display methods by using eye gaze data that was collected in visual information processing behavior studies. Eye gaze data was first converted into a sequence and was fed into neural networks to predict the information display type. The results of the study show a comparison between three methods for the creation of eye tracking sequences and how they perform using three neural network models including CNN-LSTM, CNN-GRU, and 3D CNN. The results were positive with all models having an accuracy of higher than 88 percent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于眼动追踪序列的信息显示类型预测的深度学习方法
眼动追踪数据可以通过显示用户如何视觉处理信息来帮助设计有效的用户界面。本研究利用视觉信息处理行为研究中收集的眼球注视数据,建立了三种神经网络模型,并对三种信息显示方式进行了分类。首先将眼球注视数据转换成序列,并将其输入神经网络来预测信息显示类型。研究结果显示了三种创建眼动追踪序列的方法之间的比较,以及它们如何使用三种神经网络模型,包括CNN- lstm, CNN- gru和3D CNN。结果是肯定的,所有模型的准确率都高于88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1