Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T)

Atrisha Sarkar, Jianmei Guo, Norbert Siegmund, S. Apel, K. Czarnecki
{"title":"Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T)","authors":"Atrisha Sarkar, Jianmei Guo, Norbert Siegmund, S. Apel, K. Czarnecki","doi":"10.1109/ASE.2015.45","DOIUrl":null,"url":null,"abstract":"A key challenge of the development and maintenanceof configurable systems is to predict the performance ofindividual system variants based on the features selected. It isusually infeasible to measure the performance of all possible variants, due to feature combinatorics. Previous approaches predictperformance based on small samples of measured variants, butit is still open how to dynamically determine an ideal samplethat balances prediction accuracy and measurement effort. Inthis paper, we adapt two widely-used sampling strategies forperformance prediction to the domain of configurable systemsand evaluate them in terms of sampling cost, which considersprediction accuracy and measurement effort simultaneously. Togenerate an initial sample, we introduce a new heuristic based onfeature frequencies and compare it to a traditional method basedon t-way feature coverage. We conduct experiments on six realworldsystems and provide guidelines for stakeholders to predictperformance by sampling.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"15 1","pages":"342-352"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 145

Abstract

A key challenge of the development and maintenanceof configurable systems is to predict the performance ofindividual system variants based on the features selected. It isusually infeasible to measure the performance of all possible variants, due to feature combinatorics. Previous approaches predictperformance based on small samples of measured variants, butit is still open how to dynamically determine an ideal samplethat balances prediction accuracy and measurement effort. Inthis paper, we adapt two widely-used sampling strategies forperformance prediction to the domain of configurable systemsand evaluate them in terms of sampling cost, which considersprediction accuracy and measurement effort simultaneously. Togenerate an initial sample, we introduce a new heuristic based onfeature frequencies and compare it to a traditional method basedon t-way feature coverage. We conduct experiments on six realworldsystems and provide guidelines for stakeholders to predictperformance by sampling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可配置系统性能预测的成本效益抽样(T)
可配置系统的开发和维护的一个关键挑战是基于所选择的特征来预测单个系统变体的性能。由于特征组合,衡量所有可能变体的性能通常是不可行的。以前的方法是基于测量变量的小样本来预测性能,但是如何动态地确定一个平衡预测精度和测量工作的理想样本仍然是开放的。本文将两种常用的性能预测采样策略应用于可配置系统领域,同时考虑预测精度和测量工作量,并从采样成本的角度对其进行评价。为了生成初始样本,我们引入了一种新的基于特征频率的启发式方法,并将其与基于t-way特征覆盖的传统方法进行了比较。我们在六个现实世界的系统上进行了实验,并为利益相关者提供了通过抽样预测性能的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T) Refactorings for Android Asynchronous Programming Study and Refactoring of Android Asynchronous Programming (T) The iMPAcT Tool: Testing UI Patterns on Mobile Applications Combining Deep Learning with Information Retrieval to Localize Buggy Files for Bug Reports (N)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1