Mapping Invasive Herbaceous Plant Species with Sentinel-2 Satellite Imagery: Echium plantagineum in a Mediterranean Shrubland as a Case Study

IF 2.3 Q2 REMOTE SENSING Applied Geomatics Pub Date : 2023-04-18 DOI:10.3390/geomatics3020018
P. Duncan, E. Podest, K. Esler, S. Geerts, C. Lyons
{"title":"Mapping Invasive Herbaceous Plant Species with Sentinel-2 Satellite Imagery: Echium plantagineum in a Mediterranean Shrubland as a Case Study","authors":"P. Duncan, E. Podest, K. Esler, S. Geerts, C. Lyons","doi":"10.3390/geomatics3020018","DOIUrl":null,"url":null,"abstract":"Invasive alien plants (IAPs) pose a serious threat to biodiversity, agriculture, health, and economies globally. Accurate mapping of IAPs is crucial for their management, to mitigate their impacts and prevent further spread where possible. Remote sensing has become a valuable tool in detecting IAPs, especially with freely available data such as Sentinel-2 satellite imagery. Yet, remote sensing methods to map herbaceous IAPs, which tend to be more difficult to detect, particularly in shrubland Mediterranean-type ecosystems, are still limited. There is a growing need to detect herbaceous IAPs at a large scale for monitoring and management; however, for countries or organizations with limited budgets, this is often not feasible. To address this, we aimed to develop a classification methodology based on optical satellite data to map herbaceous IAP’s using Echium plantagineum as a case study in the Fynbos Biome of South Africa. We investigate the use of freely available Sentinel-2 data, use the robust non-parametric classifier Random Forest, and identify the most important variables in the classification, all within the cloud-based platform, Google Earth Engine. Findings reveal the importance of the shortwave infrared and red-edge parts of the spectrum and the importance of including vegetation indices in the classification for discriminating E. plantagineum. Here, we demonstrate the potential of Sentinel-2 data, the Random Forest classifier, and Google Earth Engine for mapping herbaceous IAPs in Mediterranean ecosystems.","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geomatics3020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Invasive alien plants (IAPs) pose a serious threat to biodiversity, agriculture, health, and economies globally. Accurate mapping of IAPs is crucial for their management, to mitigate their impacts and prevent further spread where possible. Remote sensing has become a valuable tool in detecting IAPs, especially with freely available data such as Sentinel-2 satellite imagery. Yet, remote sensing methods to map herbaceous IAPs, which tend to be more difficult to detect, particularly in shrubland Mediterranean-type ecosystems, are still limited. There is a growing need to detect herbaceous IAPs at a large scale for monitoring and management; however, for countries or organizations with limited budgets, this is often not feasible. To address this, we aimed to develop a classification methodology based on optical satellite data to map herbaceous IAP’s using Echium plantagineum as a case study in the Fynbos Biome of South Africa. We investigate the use of freely available Sentinel-2 data, use the robust non-parametric classifier Random Forest, and identify the most important variables in the classification, all within the cloud-based platform, Google Earth Engine. Findings reveal the importance of the shortwave infrared and red-edge parts of the spectrum and the importance of including vegetation indices in the classification for discriminating E. plantagineum. Here, we demonstrate the potential of Sentinel-2 data, the Random Forest classifier, and Google Earth Engine for mapping herbaceous IAPs in Mediterranean ecosystems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Sentinel-2卫星图像绘制入侵草本植物物种:以地中海灌木丛中的金车前草为例
外来入侵植物对全球生物多样性、农业、健康和经济构成严重威胁。准确绘制iap地图对其管理、减轻其影响并尽可能防止进一步传播至关重要。遥感已成为探测iap的宝贵工具,特别是利用Sentinel-2卫星图像等免费数据。然而,绘制草本植物间相互作用的遥感方法仍然有限,因为草本植物间相互作用往往更难探测,特别是在地中海型灌木生态系统中。为了监测和管理,越来越需要大规模地检测草本类iap;然而,对于预算有限的国家或组织来说,这往往是不可行的。为了解决这个问题,我们旨在开发一种基于光学卫星数据的分类方法,以南非Fynbos生物群系的Echium plantagineum为例,绘制草本植物IAP的地图。我们研究了免费提供的Sentinel-2数据的使用,使用鲁棒非参数分类器Random Forest,并确定了分类中最重要的变量,所有这些都在基于云的平台Google Earth Engine中进行。研究结果揭示了短波红外光谱和红边光谱的重要性,以及将植被指数纳入金车前草的分类中对鉴别金车前草的重要性。在这里,我们展示了Sentinel-2数据、随机森林分类器和谷歌地球引擎在绘制地中海生态系统草本iap方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Geomatics
Applied Geomatics REMOTE SENSING-
CiteScore
5.40
自引率
3.70%
发文量
61
期刊介绍: Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences. The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology. Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements
期刊最新文献
The effect of spatial lag on modeling geomatic covariates using analysis of variance Flood susceptibility mapping using machine learning and remote sensing data in the Southern Karun Basin, Iran Spatial assessment of groundwater potential zones using remote sensing, GIS and analytical hierarchy process: A case study of Siliguri subdivision, West Bengal Sequential Gaussian simulation for mapping the spatial variability of saturated soil hydraulic conductivity at watershed scale Geoinformatics and Analytic Hierarchy Process (AHP) in modelling groundwater potential in Obudu Plateau, Southeastern Nigeria Bamenda Massif
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1