Optimized fast data migration for hybrid DRAM/STT-MRAM main memory

Chenji Liu, Lan Chen, Xiaoran Hao, Mao Ni
{"title":"Optimized fast data migration for hybrid DRAM/STT-MRAM main memory","authors":"Chenji Liu, Lan Chen, Xiaoran Hao, Mao Ni","doi":"10.1587/elex.18.20210493","DOIUrl":null,"url":null,"abstract":"In order to reduce the main memory energy of the IoT terminal, STT-MRAM is used to replace DRAM to save refresh energy. However, the write performance of STT-MRAM cells is worse than that of DRAM. Our previous work proposed a hybrid DRAM/STT-MRAM main memory and fast data migration to reduce the adverse effects of poor write performance of STT-MRAM cells with negligible performance overhead. This article optimizes the migration algorithm and experiment scheme: 1. Reduce the storage overhead of the algorithm. 2. Realize the continuous work of the algorithm. 3. Consider the impact of system standby time on main memory energy. The results show that compared with our previous work, the storage overhead of the algorithm is reduced 99.8%. When the system standby time is zero, the energy of the hybrid main memory (including the energy of the algorithm) is reduced by 4% on average compared to DRAM. The longer the system standby time, the more energy saving.","PeriodicalId":13437,"journal":{"name":"IEICE Electron. Express","volume":"12 1","pages":"20210493"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Electron. Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/elex.18.20210493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to reduce the main memory energy of the IoT terminal, STT-MRAM is used to replace DRAM to save refresh energy. However, the write performance of STT-MRAM cells is worse than that of DRAM. Our previous work proposed a hybrid DRAM/STT-MRAM main memory and fast data migration to reduce the adverse effects of poor write performance of STT-MRAM cells with negligible performance overhead. This article optimizes the migration algorithm and experiment scheme: 1. Reduce the storage overhead of the algorithm. 2. Realize the continuous work of the algorithm. 3. Consider the impact of system standby time on main memory energy. The results show that compared with our previous work, the storage overhead of the algorithm is reduced 99.8%. When the system standby time is zero, the energy of the hybrid main memory (including the energy of the algorithm) is reduced by 4% on average compared to DRAM. The longer the system standby time, the more energy saving.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化了混合DRAM/STT-MRAM主存的快速数据迁移
为了减少IoT终端的主存能量,采用STT-MRAM代替DRAM来节省刷新能量。但是,STT-MRAM单元的写入性能比DRAM差。我们之前的工作提出了一种混合DRAM/STT-MRAM主存储器和快速数据迁移,以减少STT-MRAM单元写性能差的不利影响,而性能开销可以忽略不计。本文对迁移算法和实验方案进行了优化:减少算法的存储开销。2. 实现算法的连续工作。3.考虑系统待机时间对主存储器能量的影响。结果表明,与我们以前的工作相比,该算法的存储开销降低了99.8%。当系统待机时间为零时,混合主存的能量(包括算法的能量)比DRAM平均减少4%。系统待机时间越长,越节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum:A 240μW 17bit ENOB ΔΣ modulator using 2nd-order noise-shaped integrating quantizer [IEICE Electronics Express Vol. 19 (2022) No. 5 pp. 20220038] Model-free double fractional-order integral sliding mode control for permanent magnet synchronous motor based electric mopeds drive system Bayesian neural network based inductance calculations of wireless power transfer systems EDF laser displacement sensor based on bending characteristics of polarization-independent double-pass cascaded-chirped long-period fiber grating A five-level inverter based on differential structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1