High resolution pre-stack seismic inversion using few-shot learning

Ting Chen, Yaojun Wang, Hanpeng Cai, Gang Yu, Guangmin Hu
{"title":"High resolution pre-stack seismic inversion using few-shot learning","authors":"Ting Chen,&nbsp;Yaojun Wang,&nbsp;Hanpeng Cai,&nbsp;Gang Yu,&nbsp;Guangmin Hu","doi":"10.1016/j.aiig.2022.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>We propose to use a Few-Shot Learning (FSL) method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data. Recently, artificial neural network (ANN) demonstrates great advantages for seismic inversion because of its powerful feature extraction and parameter learning ability. Hence, ANN method could provide a high resolution inversion result that are critical for reservoir characterization. However, the ANN approach requires plenty of labeled samples for training in order to obtain a satisfactory result. For the common problem of scarce samples in the ANN seismic inversion, we create a novel pre-stack seismic inversion method that takes advantage of the FSL. The results of conventional inversion are used as the auxiliary dataset for ANN based on FSL, while the well log is regarded the scarce training dataset. According to the characteristics of seismic inversion (large amount and high dimensional), we construct an arch network (A-Net) architecture to implement this method. An example shows that this method can improve the accuracy and resolution of inversion results.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"3 ","pages":"Pages 203-208"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544122000375/pdfft?md5=520f968b5df6289799123c0b528338d6&pid=1-s2.0-S2666544122000375-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544122000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose to use a Few-Shot Learning (FSL) method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data. Recently, artificial neural network (ANN) demonstrates great advantages for seismic inversion because of its powerful feature extraction and parameter learning ability. Hence, ANN method could provide a high resolution inversion result that are critical for reservoir characterization. However, the ANN approach requires plenty of labeled samples for training in order to obtain a satisfactory result. For the common problem of scarce samples in the ANN seismic inversion, we create a novel pre-stack seismic inversion method that takes advantage of the FSL. The results of conventional inversion are used as the auxiliary dataset for ANN based on FSL, while the well log is regarded the scarce training dataset. According to the characteristics of seismic inversion (large amount and high dimensional), we construct an arch network (A-Net) architecture to implement this method. An example shows that this method can improve the accuracy and resolution of inversion results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于少弹学习的高分辨率叠前地震反演
针对叠前地震反演问题,提出了利用FSL方法从地震记录数据中获得高分辨率储层模型的方法。近年来,人工神经网络(ANN)以其强大的特征提取和参数学习能力在地震反演中显示出巨大的优势。因此,人工神经网络方法可以提供高分辨率的反演结果,这对储层表征至关重要。然而,为了获得满意的结果,人工神经网络方法需要大量的标记样本进行训练。针对人工神经网络地震反演中常见的样本稀缺问题,提出了一种利用FSL的叠前地震反演方法。常规反演结果作为基于FSL的人工神经网络的辅助数据集,测井数据作为稀缺训练数据集。根据地震反演量大、维数高的特点,构建了拱网(A-Net)结构来实现该方法。算例表明,该方法可以提高反演结果的精度和分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
An FCM-based microseismic phase arrival picking method and application An adaptable hybrid method for lossless airborne lidar data compression The Fossil Frontier: An answer to the 3-billion fossil question Application of machine learning for permeability prediction in heterogeneous carbonate reservoirs Hierarchical machine learning for the automatic classification of surface deformation from SAR observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1