{"title":"A neuro-fuzzy inference system for stakeholder classification","authors":"Yasiel Pérez Vera, Anié Bermudez Peña","doi":"10.4067/s0718-33052022000200378","DOIUrl":null,"url":null,"abstract":"Stakeholder classification is carried out manually using methods such as brainstorming, interviews with experts, and checklists. These methods present a subjective character as they depend on the appreciation of the interviewees. This characteristic affects the accuracy of this classification, making that the project managers do not make the correct decisions. The research aims to suggest a fuzzy inference system for the classification of stakeholders, which will improve the quality of such classification in the projects. The proposal carries out the machine learning and the adjustment of the fuzzy inference system to classify the stakeholders by executing four algorithms based on artificial neural networks: ANFIS, HYFIS, FS.HGD, and FIR.DM. It analyzes the results of applying them in 10 iterations by calculating the measures: percentage of correct classifications, false-positive cases, false-negative cases, and mean square error. The ANFIS system show the best results. The fuzzy inference system for stakeholder classification generated improves the quality of this classification using machine learning, allowing to make better decisions in a project.","PeriodicalId":40015,"journal":{"name":"Ingeniare","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingeniare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0718-33052022000200378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Stakeholder classification is carried out manually using methods such as brainstorming, interviews with experts, and checklists. These methods present a subjective character as they depend on the appreciation of the interviewees. This characteristic affects the accuracy of this classification, making that the project managers do not make the correct decisions. The research aims to suggest a fuzzy inference system for the classification of stakeholders, which will improve the quality of such classification in the projects. The proposal carries out the machine learning and the adjustment of the fuzzy inference system to classify the stakeholders by executing four algorithms based on artificial neural networks: ANFIS, HYFIS, FS.HGD, and FIR.DM. It analyzes the results of applying them in 10 iterations by calculating the measures: percentage of correct classifications, false-positive cases, false-negative cases, and mean square error. The ANFIS system show the best results. The fuzzy inference system for stakeholder classification generated improves the quality of this classification using machine learning, allowing to make better decisions in a project.
期刊介绍:
Ingeniare. Revista chilena de ingeniería is published periodically, is printed in three issues per volume annually, publishing original articles by professional and academic authors belonging to public or private organisations, from Chile and the rest of the world, with the purpose of disseminating their experiences in engineering science and technology in the areas of Electronics, Electricity, Computing and Information Sciences, Mechanical, Acoustic, Industrial and Engineering Teaching. The abbreviated title of the journal is Ingeniare. Rev. chil. ing. , which should be used in bibliographies, footnotes and bibliographical references and strips.