A neuro-fuzzy inference system for stakeholder classification

Q4 Engineering Ingeniare Pub Date : 2022-06-01 DOI:10.4067/s0718-33052022000200378
Yasiel Pérez Vera, Anié Bermudez Peña
{"title":"A neuro-fuzzy inference system for stakeholder classification","authors":"Yasiel Pérez Vera, Anié Bermudez Peña","doi":"10.4067/s0718-33052022000200378","DOIUrl":null,"url":null,"abstract":"Stakeholder classification is carried out manually using methods such as brainstorming, interviews with experts, and checklists. These methods present a subjective character as they depend on the appreciation of the interviewees. This characteristic affects the accuracy of this classification, making that the project managers do not make the correct decisions. The research aims to suggest a fuzzy inference system for the classification of stakeholders, which will improve the quality of such classification in the projects. The proposal carries out the machine learning and the adjustment of the fuzzy inference system to classify the stakeholders by executing four algorithms based on artificial neural networks: ANFIS, HYFIS, FS.HGD, and FIR.DM. It analyzes the results of applying them in 10 iterations by calculating the measures: percentage of correct classifications, false-positive cases, false-negative cases, and mean square error. The ANFIS system show the best results. The fuzzy inference system for stakeholder classification generated improves the quality of this classification using machine learning, allowing to make better decisions in a project.","PeriodicalId":40015,"journal":{"name":"Ingeniare","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingeniare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0718-33052022000200378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Stakeholder classification is carried out manually using methods such as brainstorming, interviews with experts, and checklists. These methods present a subjective character as they depend on the appreciation of the interviewees. This characteristic affects the accuracy of this classification, making that the project managers do not make the correct decisions. The research aims to suggest a fuzzy inference system for the classification of stakeholders, which will improve the quality of such classification in the projects. The proposal carries out the machine learning and the adjustment of the fuzzy inference system to classify the stakeholders by executing four algorithms based on artificial neural networks: ANFIS, HYFIS, FS.HGD, and FIR.DM. It analyzes the results of applying them in 10 iterations by calculating the measures: percentage of correct classifications, false-positive cases, false-negative cases, and mean square error. The ANFIS system show the best results. The fuzzy inference system for stakeholder classification generated improves the quality of this classification using machine learning, allowing to make better decisions in a project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利益相关者分类的神经模糊推理系统
干系人分类是使用诸如头脑风暴、专家访谈和检查表等方法手动进行的。这些方法呈现出主观的特征,因为它们取决于受访者的欣赏。这一特性影响了分类的准确性,使得项目经理无法做出正确的决策。本研究旨在提出一种模糊推理系统,用于项目利益相关者的分类,以提高项目利益相关者的分类质量。该方案通过执行基于人工神经网络的四种算法:ANFIS、HYFIS、FS,对模糊推理系统进行机器学习和调整,对利益相关者进行分类。HGD和fird . dm。它通过计算度量来分析在10次迭代中应用它们的结果:正确分类的百分比、假阳性情况、假阴性情况和均方误差。ANFIS系统显示出最好的效果。生成的涉众分类模糊推理系统使用机器学习提高了分类的质量,允许在项目中做出更好的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ingeniare
Ingeniare Engineering-Engineering (all)
CiteScore
0.90
自引率
0.00%
发文量
32
审稿时长
10 weeks
期刊介绍: Ingeniare. Revista chilena de ingeniería is published periodically, is printed in three issues per volume annually, publishing original articles by professional and academic authors belonging to public or private organisations, from Chile and the rest of the world, with the purpose of disseminating their experiences in engineering science and technology in the areas of Electronics, Electricity, Computing and Information Sciences, Mechanical, Acoustic, Industrial and Engineering Teaching. The abbreviated title of the journal is Ingeniare. Rev. chil. ing. , which should be used in bibliographies, footnotes and bibliographical references and strips.
期刊最新文献
Posicionamiento de ayuda visual utilizando compresión de nube de puntos y cámaras RGB-D para manipuladores robóticos Modelo de relación entre la actitud y aptitud en la tipología del emprendedor A systematic review of how wireless Communications work and interact in a natural disaster situation in Iquique city Combinatorial optimization algorithm with coordínate search method to lócate and size distributed generation plants in a radial distribution electrical system Modelo matemático por identificación paramétrica y diseño de controlador difuso en la sección de enfriamiento de una planta de calentamiento-enfriamiento de fluidos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1