Improved Bounds for Rectangular Monotone Min-Plus Product

Anita Dürr
{"title":"Improved Bounds for Rectangular Monotone Min-Plus Product","authors":"Anita Dürr","doi":"10.48550/arXiv.2208.02862","DOIUrl":null,"url":null,"abstract":"In a recent breakthrough paper, Chi et al. (STOC'22) introduce an $\\tilde{O}(n^{\\frac{3 + \\omega}{2}})$ time algorithm to compute Monotone Min-Plus Product between two square matrices of dimensions $n \\times n$ and entries bounded by $O(n)$. This greatly improves upon the previous $\\tilde O(n^{\\frac{12 + \\omega}{5}})$ time algorithm and as a consequence improves bounds for its applications. Several other applications involve Monotone Min-Plus Product between rectangular matrices, and even if Chi et al.'s algorithm seems applicable for the rectangular case, the generalization is not straightforward. In this paper we present a generalization of the algorithm of Chi et al. to solve Monotone Min-Plus Product for rectangular matrices with polynomial bounded values. We next use this faster algorithm to improve running times for the following applications of Rectangular Monotone Min-Plus Product: $M$-bounded Single Source Replacement Path, Batch Range Mode, $k$-Dyck Edit Distance and 2-approximation of All Pairs Shortest Path. We also improve the running time for Unweighted Tree Edit Distance using the algorithm by Chi et al.","PeriodicalId":13545,"journal":{"name":"Inf. Process. Lett.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.02862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In a recent breakthrough paper, Chi et al. (STOC'22) introduce an $\tilde{O}(n^{\frac{3 + \omega}{2}})$ time algorithm to compute Monotone Min-Plus Product between two square matrices of dimensions $n \times n$ and entries bounded by $O(n)$. This greatly improves upon the previous $\tilde O(n^{\frac{12 + \omega}{5}})$ time algorithm and as a consequence improves bounds for its applications. Several other applications involve Monotone Min-Plus Product between rectangular matrices, and even if Chi et al.'s algorithm seems applicable for the rectangular case, the generalization is not straightforward. In this paper we present a generalization of the algorithm of Chi et al. to solve Monotone Min-Plus Product for rectangular matrices with polynomial bounded values. We next use this faster algorithm to improve running times for the following applications of Rectangular Monotone Min-Plus Product: $M$-bounded Single Source Replacement Path, Batch Range Mode, $k$-Dyck Edit Distance and 2-approximation of All Pairs Shortest Path. We also improve the running time for Unweighted Tree Edit Distance using the algorithm by Chi et al.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩形单调最小加积的改进界
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monochromatic partitioning of colored points by lines An Improved Kernel for the Flip Distance Problem on Simple Convex Polygons Improved Bounds for Rectangular Monotone Min-Plus Product On Voronoi visibility maps of 1.5D terrains with multiple viewpoints Polynomial recognition of vulnerable multi-commodities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1