On the impact of Group Delay Variations on GNSS time and frequency transfer

T. Kersten, S. Schon, U. Weinbach
{"title":"On the impact of Group Delay Variations on GNSS time and frequency transfer","authors":"T. Kersten, S. Schon, U. Weinbach","doi":"10.1109/EFTF.2012.6502435","DOIUrl":null,"url":null,"abstract":"Group Delay Variations (GDVs) are azimuth and elevation dependent code delays that can limit the accuracy of the GNSS code observables. This contribution focuses on the GDV determination and discusses several solutions with respect to repeatability and separability. On-site tests at a laboratory network as well as simulations of several time links are discussed analyzing the stochastic processes apparently introduced by GDV. The stability of the P3 links are not effected. However, offsets up to 0.6 ns can occur. In a detailed study, GDVs are applied to an inter-continental Precise Point Positioning (PPP) time transfer link. This analysis shows that GDV are not an issue for the stability of the PPP links, since small weights reduce the impact of the P3 GDV. It can be shown that the stochastic process, induced by GDV in a PPP analysis, is similar to a random walk noise, well below the L3 carrier phase observation noise of σφ = 6 mm. Offsets for the receiver clock estimates of up to 0.4 ns are reported for the link WTZS (Wettzell) and Boulder (NIST).","PeriodicalId":6409,"journal":{"name":"2012 European Frequency and Time Forum","volume":"13 1","pages":"514-521"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 European Frequency and Time Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFTF.2012.6502435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Group Delay Variations (GDVs) are azimuth and elevation dependent code delays that can limit the accuracy of the GNSS code observables. This contribution focuses on the GDV determination and discusses several solutions with respect to repeatability and separability. On-site tests at a laboratory network as well as simulations of several time links are discussed analyzing the stochastic processes apparently introduced by GDV. The stability of the P3 links are not effected. However, offsets up to 0.6 ns can occur. In a detailed study, GDVs are applied to an inter-continental Precise Point Positioning (PPP) time transfer link. This analysis shows that GDV are not an issue for the stability of the PPP links, since small weights reduce the impact of the P3 GDV. It can be shown that the stochastic process, induced by GDV in a PPP analysis, is similar to a random walk noise, well below the L3 carrier phase observation noise of σφ = 6 mm. Offsets for the receiver clock estimates of up to 0.4 ns are reported for the link WTZS (Wettzell) and Boulder (NIST).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群时延变化对GNSS时频传输的影响
群延迟变化(GDVs)是方位和仰角相关的代码延迟,可以限制GNSS代码观测值的准确性。这篇文章主要关注GDV的确定,并讨论了关于可重复性和可分离性的几个解决方案。讨论了实验室网络的现场试验和几个时间环节的模拟,分析了明显由GDV引入的随机过程。不影响P3链路的稳定性。然而,偏移量可达0.6 ns。在详细的研究中,gdv应用于洲际精确点定位(PPP)时间传输链路。这一分析表明,GDV对PPP链路的稳定性不是一个问题,因为较小的权重降低了P3 GDV的影响。结果表明,PPP分析中由GDV引起的随机过程类似于随机游走噪声,远低于σφ = 6 mm的L3载波相位观测噪声。据报道,WTZS (Wettzell)和Boulder (NIST)链路的接收机时钟估计偏移量高达0.4 ns。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of compact CPT clocks based on a Cs-Ne microcell Iodine based optical frequency reference with 10−15 stability On the impact of Group Delay Variations on GNSS time and frequency transfer T2L2 : Ground to ground Time Transfer Inter-comparison of the UTC time transfer links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1