A deep learning approach for web service interactions

Hamza Labbaci, B. Medjahed, Faisal Binzagr, Youcef Aklouf
{"title":"A deep learning approach for web service interactions","authors":"Hamza Labbaci, B. Medjahed, Faisal Binzagr, Youcef Aklouf","doi":"10.1145/3106426.3106492","DOIUrl":null,"url":null,"abstract":"Predicting Web service interactions such as composition and substitution provides support for developers during mashup design. In this paper, we propose a deep-learning approach for predicting compositions and substitutions. To the best of our knowledge, this work is the first to adopt deep learning for interactions prediction. We use stacked autoencoders to learn latent service features. A deep feed forward neural network leverages the learned features and the history of previous interactions to predict new ones. We conducted extensive experiments on real-world Web services to illustrate the performance of our approach. We show that the use of deep learning achieves a high accuracy level and outperforms existing models such as multi-layer perceptron and support vector machine.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":"246 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3106492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predicting Web service interactions such as composition and substitution provides support for developers during mashup design. In this paper, we propose a deep-learning approach for predicting compositions and substitutions. To the best of our knowledge, this work is the first to adopt deep learning for interactions prediction. We use stacked autoencoders to learn latent service features. A deep feed forward neural network leverages the learned features and the history of previous interactions to predict new ones. We conducted extensive experiments on real-world Web services to illustrate the performance of our approach. We show that the use of deep learning achieves a high accuracy level and outperforms existing models such as multi-layer perceptron and support vector machine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于web服务交互的深度学习方法
预测Web服务交互(如组合和替换)为开发人员在mashup设计期间提供了支持。在本文中,我们提出了一种深度学习方法来预测组合和替换。据我们所知,这项工作是第一次采用深度学习进行交互预测。我们使用堆叠式自编码器来学习潜在的服务特征。深度前馈神经网络利用学习到的特征和以前交互的历史来预测新的特征。我们在现实世界的Web服务上进行了大量的实验,以说明我们的方法的性能。我们表明,深度学习的使用达到了很高的精度水平,并且优于现有的模型,如多层感知器和支持向量机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WIMS 2020: The 10th International Conference on Web Intelligence, Mining and Semantics, Biarritz, France, June 30 - July 3, 2020 A deep learning approach for web service interactions Partial sums-based P-Rank computation in information networks Mining ordinal data under human response uncertainty Haste makes waste: a case to favour voting bots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1