Estimation of the Greatest Common Divisor of many polynomials using hybrid computations performed by the ERES method

Dimitrios Christou, Marilena Mitrouli
{"title":"Estimation of the Greatest Common Divisor of many polynomials using hybrid computations performed by the ERES method","authors":"Dimitrios Christou,&nbsp;Marilena Mitrouli","doi":"10.1002/anac.200410052","DOIUrl":null,"url":null,"abstract":"<p>The computation of the Greatest Common Divisor (GCD) of a set of more than two polynomials is a non-generic problem. There are cases where iterative methods of computing the GCD of many polynomials, based on the Euclidean algorithm, fail to produce accurate results, when they are implemented in a software programming environment. This phenomenon is very strong especially when floating-point data are being used. The ERES method is an iterative matrix based method, which successfully evaluates an approximate GCD, by performing row transformations and shifting on a matrix, formed directly from the coefficients of the given polynomials. ERES deals with any kind of real data. However, due to its iterative nature, it is extremely sensitive when performing floating-point operations. It succeeds in producing results with minimal error, if we combine both floating-point and symbolic operations. In the present paper we study the behavior of the ERES method using floating-point and exact symbolic arithmetic. The conclusions derived from our study are useful for any other algorithm involving extended matrix operations. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 3","pages":"293-305"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410052","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The computation of the Greatest Common Divisor (GCD) of a set of more than two polynomials is a non-generic problem. There are cases where iterative methods of computing the GCD of many polynomials, based on the Euclidean algorithm, fail to produce accurate results, when they are implemented in a software programming environment. This phenomenon is very strong especially when floating-point data are being used. The ERES method is an iterative matrix based method, which successfully evaluates an approximate GCD, by performing row transformations and shifting on a matrix, formed directly from the coefficients of the given polynomials. ERES deals with any kind of real data. However, due to its iterative nature, it is extremely sensitive when performing floating-point operations. It succeeds in producing results with minimal error, if we combine both floating-point and symbolic operations. In the present paper we study the behavior of the ERES method using floating-point and exact symbolic arithmetic. The conclusions derived from our study are useful for any other algorithm involving extended matrix operations. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用混合计算方法估计许多多项式的最大公约数
两个以上多项式集的最大公约数的计算是一个非一般问题。当在软件编程环境中实现时,基于欧几里得算法计算许多多项式的GCD的迭代方法无法产生准确的结果。这种现象非常强烈,特别是在使用浮点数据时。ERES方法是一种基于迭代矩阵的方法,通过对由给定多项式的系数直接形成的矩阵进行行变换和移位,成功地求出近似GCD。ERES处理任何类型的真实数据。然而,由于它的迭代性质,在执行浮点操作时非常敏感。如果我们将浮点操作和符号操作结合起来,它可以成功地以最小的错误生成结果。本文利用浮点数和精确符号算法研究了ERES方法的性能。本研究的结论对其他涉及扩展矩阵运算的算法也有借鉴意义。(©2005 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of the Greatest Common Divisor of many polynomials using hybrid computations performed by the ERES method Analysis and Application of an Orthogonal Nodal Basis on Triangles for Discontinuous Spectral Element Methods Analytic Evaluation of Collocation Integrals for the Radiosity Equation A Symplectic Trigonometrically Fitted Modified Partitioned Runge-Kutta Method for the Numerical Integration of Orbital Problems Solving Hyperbolic PDEs in MATLAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1