Evaluation and Time-Scaling of Trajectories for Wheeled Mobile Robots

T. Graettinger, B. Krogh
{"title":"Evaluation and Time-Scaling of Trajectories for Wheeled Mobile Robots","authors":"T. Graettinger, B. Krogh","doi":"10.23919/ACC.1988.4789773","DOIUrl":null,"url":null,"abstract":"We present a method for evaluating the feasibility of trajectories generated by path-planing systems for wheeled mobile robots (WMRs). Constraints that limit the class of executable trajectories for a given WMR are classified as path constraints, kinematic constraints, and dynamic constraints. Path constraints, which are limits on the path geometry, are a function of the wheelbase configuration and steering mechanism. Limits that involve only functions of velocities and accelerations are termed kinematic constraints. Dynamic constraints refer to limits on force/torque inputs and frictional force constraints which must be satisfied for a trajectory to be feasible. We show that when path constraints are violated the path must be modified to achieve feasibility, while violations of kinematic and dynamic constraints can be eliminated by time scaling so that the same path is followed at a slower speed. The concepts are developed and illustrated in the context of a model for the dynamics of a conventionally steered vehicle.","PeriodicalId":6395,"journal":{"name":"1988 American Control Conference","volume":"50 1","pages":"511-516"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1988 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1988.4789773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

We present a method for evaluating the feasibility of trajectories generated by path-planing systems for wheeled mobile robots (WMRs). Constraints that limit the class of executable trajectories for a given WMR are classified as path constraints, kinematic constraints, and dynamic constraints. Path constraints, which are limits on the path geometry, are a function of the wheelbase configuration and steering mechanism. Limits that involve only functions of velocities and accelerations are termed kinematic constraints. Dynamic constraints refer to limits on force/torque inputs and frictional force constraints which must be satisfied for a trajectory to be feasible. We show that when path constraints are violated the path must be modified to achieve feasibility, while violations of kinematic and dynamic constraints can be eliminated by time scaling so that the same path is followed at a slower speed. The concepts are developed and illustrated in the context of a model for the dynamics of a conventionally steered vehicle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轮式移动机器人轨迹评估与时间标度
我们提出了一种评估由轮式移动机器人(WMRs)路径规划系统生成的轨迹可行性的方法。限制给定WMR可执行轨迹类别的约束被分类为路径约束、运动学约束和动态约束。路径约束是对路径几何形状的限制,是轴距配置和转向机构的函数。仅涉及速度和加速度函数的极限称为运动约束。动态约束是指对力/扭矩输入的限制和摩擦力的约束,这些约束是轨迹可行所必须满足的。我们表明,当路径约束被违反时,必须修改路径以实现可行性,而违反运动学和动力学约束可以通过时间尺度消除,从而以较慢的速度遵循相同的路径。概念的发展和说明,在一个模型的背景下,为一个传统的转向车辆的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reachable Set Control For Preferred Axis Homing Missiles Parallel Algorithms for Large Scale Power System Dynamic Simulation On the Stability of a Self-Tuning Controller in the Presence of Bounded Disturbances Evaluation and Time-Scaling of Trajectories for Wheeled Mobile Robots Dynamics and Tuning of Systems with Large Delay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1