{"title":"Optimal sampling from distributed streams","authors":"Graham Cormode, S. Muthukrishnan, K. Yi, Qin Zhang","doi":"10.1145/1807085.1807099","DOIUrl":null,"url":null,"abstract":"A fundamental problem in data management is to draw a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple distributed sites. The challenge is to ensure that a sample is drawn uniformly across the union of the data while minimizing the communication needed to run the protocol and track parameters of the evolving data. At the same time, it is also necessary to make the protocol lightweight, by keeping the space and time costs low for each participant. In this paper, we present communication-efficient protocols for sampling (both with and without replacement) from k distributed streams. These apply to the case when we want a sample from the full streams, and to the sliding window cases of only the W most recent items, or arrivals within the last w time units. We show that our protocols are optimal, not just in terms of the communication used, but also that they use minimal or near minimal (up to logarithmic factors) time to process each new item, and space to operate.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"45 1","pages":"77-86"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807085.1807099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

Abstract

A fundamental problem in data management is to draw a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple distributed sites. The challenge is to ensure that a sample is drawn uniformly across the union of the data while minimizing the communication needed to run the protocol and track parameters of the evolving data. At the same time, it is also necessary to make the protocol lightweight, by keeping the space and time costs low for each participant. In this paper, we present communication-efficient protocols for sampling (both with and without replacement) from k distributed streams. These apply to the case when we want a sample from the full streams, and to the sliding window cases of only the W most recent items, or arrivals within the last w time units. We show that our protocols are optimal, not just in terms of the communication used, but also that they use minimal or near minimal (up to logarithmic factors) time to process each new item, and space to operate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式流的最佳采样
数据管理中的一个基本问题是绘制一个大型数据集的样本,用于近似查询应答、选择性估计和查询规划。对于大型流数据集,当数据跨多个分布式站点共享时,这个问题变得特别困难。挑战在于确保在整个数据联合中均匀地绘制样本,同时最大限度地减少运行协议和跟踪不断发展的数据参数所需的通信。同时,还需要使协议轻量级,为每个参与者保持较低的空间和时间成本。在本文中,我们提出了从k个分布式流中采样(包括替换和不替换)的通信高效协议。这些适用于我们想要从完整流中获取样本的情况,以及仅包含W个最近项目或在最后W个时间单位内到达的滑动窗口情况。我们展示了我们的协议是最优的,不仅仅是在使用的通信方面,而且它们使用最小或接近最小(高达对数因子)的时间来处理每个新项目,以及操作空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Subspace exploration: Bounds on Projected Frequency Estimation. PODS'21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event, China, June 20-25, 2021 Computing Optimal Repairs for Functional Dependencies. Relational database behavior: utilizing relational discrete event systems and models Data Citation: a Computational Challenge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1