A New Variation of Singular Value Decomposition

Heri Prasetyo, D. Rosiyadi, Iwan Setiawan
{"title":"A New Variation of Singular Value Decomposition","authors":"Heri Prasetyo, D. Rosiyadi, Iwan Setiawan","doi":"10.1109/ISPACS48206.2019.8986253","DOIUrl":null,"url":null,"abstract":"This paper presents a new variation of Singular Value Decomposition (SVD) computation for image compression. It modifies the SVD operation with two additional pre-processing steps, i.e. Pixel Interleaving and Linearization process. An input image is firstly scrambled by Pixel Interleaving operation. This interleaved image is further linearized before applying SVD calculation. As documented in the Experimental Results Section, this simple approach yields a promising result in the image compression task compared to that of the classical SVD-based technique.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"4 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a new variation of Singular Value Decomposition (SVD) computation for image compression. It modifies the SVD operation with two additional pre-processing steps, i.e. Pixel Interleaving and Linearization process. An input image is firstly scrambled by Pixel Interleaving operation. This interleaved image is further linearized before applying SVD calculation. As documented in the Experimental Results Section, this simple approach yields a promising result in the image compression task compared to that of the classical SVD-based technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
奇异值分解的一种新变体
提出了一种新的图像压缩奇异值分解(SVD)计算方法。它通过两个额外的预处理步骤来修改SVD操作,即像素交错和线性化过程。首先对输入图像进行像素交错置乱处理。在应用奇异值分解计算之前,将交错图像进一步线性化。如实验结果部分所述,与经典的基于奇异值分解的技术相比,这种简单的方法在图像压缩任务中产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shadow Compensation for Aerial Images using Statistical Color Tuning Estimation of Colorectal Tumor with Colonoscopy Based on Convolutional Neural Network Implementing portable energy storage systems in urban environments Multi Band Antenna Design for Mobile Devices A New Variation of Singular Value Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1