Low Power Multipliers Using Enhenced Row Bypassing Schemes

Y. Hwang, Jin-Fa Lin, M. Sheu, Chia-Jen Sheu
{"title":"Low Power Multipliers Using Enhenced Row Bypassing Schemes","authors":"Y. Hwang, Jin-Fa Lin, M. Sheu, Chia-Jen Sheu","doi":"10.1109/SIPS.2007.4387533","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed two novel low power multipliers based on enhanced row bypassing schemes. The essence of the power saving idea is eliminating unnecessary computation via signal bypassing. In an array multiplier, futile computations occur on those columns or rows of adder corresponding to zero bits in the input operands. Previous designs resort to input gating and output multiplexing to accomplish signal bypassing. The proposed designs, however, successfully resolve the adverse DC power consumption problem due to voltage loss in gated signals and implement the multiplexing mechanism cleverly via clock CMOS (C2MOS) circuitry. Two versions of the design are proposed with one emphasizing on maximizing power saving and the other focusing on reduced circuit complexity. The circuit overheads of both designs are confined to 23.4% and 12.8%, respectively. The proposed designs also achieve better and consistent power saving than previous work under a wide range of Vdd and the power saving can be as high as 17%.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"14 1","pages":"136-141"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, we proposed two novel low power multipliers based on enhanced row bypassing schemes. The essence of the power saving idea is eliminating unnecessary computation via signal bypassing. In an array multiplier, futile computations occur on those columns or rows of adder corresponding to zero bits in the input operands. Previous designs resort to input gating and output multiplexing to accomplish signal bypassing. The proposed designs, however, successfully resolve the adverse DC power consumption problem due to voltage loss in gated signals and implement the multiplexing mechanism cleverly via clock CMOS (C2MOS) circuitry. Two versions of the design are proposed with one emphasizing on maximizing power saving and the other focusing on reduced circuit complexity. The circuit overheads of both designs are confined to 23.4% and 12.8%, respectively. The proposed designs also achieve better and consistent power saving than previous work under a wide range of Vdd and the power saving can be as high as 17%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用增强行旁通方案的低功率乘法器
本文提出了两种基于增强型行旁通方案的新型低功耗乘法器。节电思想的本质是通过信号旁路消除不必要的计算。在数组乘法器中,无效的计算发生在输入操作数中与零位对应的加法器的列或行上。以前的设计采用输入门控和输出多路复用来实现信号旁路。然而,所提出的设计成功地解决了由于门控信号的电压损耗而导致的直流功耗问题,并通过时钟CMOS (C2MOS)电路巧妙地实现了多路复用机制。提出了两种版本的设计,一种强调最大限度地节省功耗,另一种侧重于降低电路复杂性。两种设计的电路开销分别限制在23.4%和12.8%。在大范围的Vdd下,所提出的设计也比以前的工作实现了更好和一致的省电,省电可高达17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Estimation of Direction of Arrival of Speech Source Using Three Microphones. Optimization of Calibration Algorithms on a Manycore Embedded Platform A signal denoising technique based on wavelets modulus maxima lines and a self-scalable grid classifier Spectral Management of Multiple Wireless Signals Based Cognitive Radio Synthesizing hardware from dataflow programs: An MPEG-4 simple profile decoder case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1