Laser powder bed fusion additive manufacturing (LPBF-AM): the influence of design features and LPBF variables on surface topography and effect on fatigue properties
J. Elambasseril, J. Rogers, C. Wallbrink, David Munk, M. Leary, M. Qian
{"title":"Laser powder bed fusion additive manufacturing (LPBF-AM): the influence of design features and LPBF variables on surface topography and effect on fatigue properties","authors":"J. Elambasseril, J. Rogers, C. Wallbrink, David Munk, M. Leary, M. Qian","doi":"10.1080/10408436.2022.2041396","DOIUrl":null,"url":null,"abstract":"Abstract The design freedom offered by additive manufacturing (AM) enables the fabrication of components with internal surfaces that are challenging to access post-manufacture. This is of concern, as the surface condition can markedly deteriorate fatigue performance. Additionally, the adaptation of surface finishing methods for AM components with topologically optimized designs can be a costly practice. It is therefore desirable to consider deploying AM parts with no or minimal surface processing for targeted applications. This requires an in-depth understanding of the formation of various types of AM surfaces, including the variation in surface condition and controlling factors, and their influence on mechanical performance. The last few years have seen significant research advances in these aspects. Ti-6Al-4V is the most extensively studied alloy for AM. The research data available now allows an informative treatment of this topic for both practical applications and future research. Using laser powder bed fusion (LPBF) of Ti-6Al-4V as a model AM − alloy system, this article examines (i) the characteristics of various types of LPBF surfaces including horizontal, vertical, inclined, upward, downward, internal isolated, and slotted surfaces; (ii) the design features and LPBF variables that affect the surface topography; (iii) the capabilities of existing post-AM surface processing methods; and (iv) the influence of AM surface topography on mechanical properties by focusing on the fatigue performance. On this basis, design considerations are recommended for AM of consistent surfaces, and priority surface-related research issues are identified. The purpose is to establish an essential knowledge base for improved commercial designs for LPBF for suitable dynamically loaded applications, with no or minimal surface processing. While centering on LPBF of Ti-6Al-4V, the insights derived are expected to be applicable to other AM processes or metallic materials.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"44 1","pages":"132 - 168"},"PeriodicalIF":8.1000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Solid State and Materials Sciences","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10408436.2022.2041396","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15
Abstract
Abstract The design freedom offered by additive manufacturing (AM) enables the fabrication of components with internal surfaces that are challenging to access post-manufacture. This is of concern, as the surface condition can markedly deteriorate fatigue performance. Additionally, the adaptation of surface finishing methods for AM components with topologically optimized designs can be a costly practice. It is therefore desirable to consider deploying AM parts with no or minimal surface processing for targeted applications. This requires an in-depth understanding of the formation of various types of AM surfaces, including the variation in surface condition and controlling factors, and their influence on mechanical performance. The last few years have seen significant research advances in these aspects. Ti-6Al-4V is the most extensively studied alloy for AM. The research data available now allows an informative treatment of this topic for both practical applications and future research. Using laser powder bed fusion (LPBF) of Ti-6Al-4V as a model AM − alloy system, this article examines (i) the characteristics of various types of LPBF surfaces including horizontal, vertical, inclined, upward, downward, internal isolated, and slotted surfaces; (ii) the design features and LPBF variables that affect the surface topography; (iii) the capabilities of existing post-AM surface processing methods; and (iv) the influence of AM surface topography on mechanical properties by focusing on the fatigue performance. On this basis, design considerations are recommended for AM of consistent surfaces, and priority surface-related research issues are identified. The purpose is to establish an essential knowledge base for improved commercial designs for LPBF for suitable dynamically loaded applications, with no or minimal surface processing. While centering on LPBF of Ti-6Al-4V, the insights derived are expected to be applicable to other AM processes or metallic materials.
期刊介绍:
Critical Reviews in Solid State and Materials Sciences covers a wide range of topics including solid state materials properties, processing, and applications. The journal provides insights into the latest developments and understandings in these areas, with an emphasis on new and emerging theoretical and experimental topics. It encompasses disciplines such as condensed matter physics, physical chemistry, materials science, and electrical, chemical, and mechanical engineering. Additionally, cross-disciplinary engineering and science specialties are included in the scope of the journal.